Algebra


  1. The value of
    1
    +
    1
    +
    1
    is
    (p − n)(n − q)(n − q)(q − p)(q − p)(p − n)









  1. View Hint View Answer Discuss in Forum

    1
    +
    1
    +
    1
    (p − n)(n − q)(n − q)(q − p)(q − p)(p − n)

    =
    (q − p) + (p − n) + (n − q)
    (p − n)(n − q)(q − p)

    =
    0
    = 0
    (p − n)(n − q)(q − p)

    Correct Option: B

    1
    +
    1
    +
    1
    (p − n)(n − q)(n − q)(q − p)(q − p)(p − n)

    =
    (q − p) + (p − n) + (n − q)
    (p − n)(n − q)(q − p)

    =
    0
    = 0
    (p − n)(n − q)(q − p)


  1. If 4x2 – 12x + k is a perfect square, then the value of k is









  1. View Hint View Answer Discuss in Forum

    (a – b)2 = a2 – 2ab + b2
    ∴  4x2 – 12x + k = (2x)2 – 2 × 2x × 3 + k
    ∴  k = (3)2 = 9

    Correct Option: B

    (a – b)2 = a2 – 2ab + b2
    ∴  4x2 – 12x + k = (2x)2 – 2 × 2x × 3 + k
    ∴  k = (3)2 = 9



  1. If x2 + y2 = 29 and xy = 10, where x > 0, y > 0, x > y
    then the value of
    x + y
    is
    x − y









  1. View Hint View Answer Discuss in Forum

    x2 + y2 = 29;
    xy = 10
    ∴  (x + y)2 = x2 + y2 + 2xy
    = 29 + 2 × 10 = 49
    ⇒  x + y = ±7
    Again, (x – y)2 = x2 + y2 – 2xy
    = 29 – 2 × 10 = 9
    ∴  x – y = ±3

    ∴ 
    x + y
    =
    ±7
    =
    7
    x – y±33

    Correct Option: B

    x2 + y2 = 29;
    xy = 10
    ∴  (x + y)2 = x2 + y2 + 2xy
    = 29 + 2 × 10 = 49
    ⇒  x + y = ±7
    Again, (x – y)2 = x2 + y2 – 2xy
    = 29 – 2 × 10 = 9
    ∴  x – y = ±3

    ∴ 
    x + y
    =
    ±7
    =
    7
    x – y±33


  1. If  
    x
    + 1 =
    x
    +
    a − b
    , then x is equal to
    a + ba − ba + b









  1. View Hint View Answer Discuss in Forum

    x
    + 1 =
    x
    +
    a − b
    a + ba − ba + b

    ⇒ 
    x
    a − b
    =
    x
    − 1
    a + ba + ba − b

    ⇒ 
    x − a + b
    =
    x − a + b
    a + ba − b

    ⇒  (x − a + b)
    1
    1
    = 0
    a + ba − b

    ⇒  x − a + b = 0
    ⇒  x = a – b

    Correct Option: C

    x
    + 1 =
    x
    +
    a − b
    a + ba − ba + b

    ⇒ 
    x
    a − b
    =
    x
    − 1
    a + ba + ba − b

    ⇒ 
    x − a + b
    =
    x − a + b
    a + ba − b

    ⇒  (x − a + b)
    1
    1
    = 0
    a + ba − b

    ⇒  x − a + b = 0
    ⇒  x = a – b



  1. If p = 99, then the value of p(p2 + 3p + 3) will be









  1. View Hint View Answer Discuss in Forum

    p(p2 + 3p + 3)
    = p3 + 3p2 + 3p
    = p3 + 3p2 + 3p + 1 – 1
    = (p + 1)3 – 1
    = (99 + 1)3 – 1
    = (100)3 – 1 = 1000000 – 1
    = 999999

    Correct Option: A

    p(p2 + 3p + 3)
    = p3 + 3p2 + 3p
    = p3 + 3p2 + 3p + 1 – 1
    = (p + 1)3 – 1
    = (99 + 1)3 – 1
    = (100)3 – 1 = 1000000 – 1
    = 999999