Algebra
-
The value of 1 + 1 + 1 is (p − n)(n − q) (n − q)(q − p) (q − p)(p − n)
-
View Hint View Answer Discuss in Forum
1 + 1 + 1 (p − n)(n − q) (n − q)(q − p) (q − p)(p − n) = (q − p) + (p − n) + (n − q) (p − n)(n − q)(q − p) = 0 = 0 (p − n)(n − q)(q − p) Correct Option: B
1 + 1 + 1 (p − n)(n − q) (n − q)(q − p) (q − p)(p − n) = (q − p) + (p − n) + (n − q) (p − n)(n − q)(q − p) = 0 = 0 (p − n)(n − q)(q − p)
- If 4x2 – 12x + k is a perfect square, then the value of k is
-
View Hint View Answer Discuss in Forum
(a – b)2 = a2 – 2ab + b2
∴ 4x2 – 12x + k = (2x)2 – 2 × 2x × 3 + k
∴ k = (3)2 = 9Correct Option: B
(a – b)2 = a2 – 2ab + b2
∴ 4x2 – 12x + k = (2x)2 – 2 × 2x × 3 + k
∴ k = (3)2 = 9
- If x2 + y2 = 29 and xy = 10, where x > 0, y > 0, x > y
then the value of x + y is x − y
-
View Hint View Answer Discuss in Forum
x2 + y2 = 29;
xy = 10
∴ (x + y)2 = x2 + y2 + 2xy
= 29 + 2 × 10 = 49
⇒ x + y = ±7
Again, (x – y)2 = x2 + y2 – 2xy
= 29 – 2 × 10 = 9
∴ x – y = ±3∴ x + y = ±7 = 7 x – y ±3 3 Correct Option: B
x2 + y2 = 29;
xy = 10
∴ (x + y)2 = x2 + y2 + 2xy
= 29 + 2 × 10 = 49
⇒ x + y = ±7
Again, (x – y)2 = x2 + y2 – 2xy
= 29 – 2 × 10 = 9
∴ x – y = ±3∴ x + y = ±7 = 7 x – y ±3 3
-
If x + 1 = x + a − b , then x is equal to a + b a − b a + b
-
View Hint View Answer Discuss in Forum
x + 1 = x + a − b a + b a − b a + b ⇒ x − a − b = x − 1 a + b a + b a − b ⇒ x − a + b = x − a + b a + b a − b ⇒ (x − a + b) 1 − 1 = 0 a + b a − b
⇒ x − a + b = 0
⇒ x = a – bCorrect Option: C
x + 1 = x + a − b a + b a − b a + b ⇒ x − a − b = x − 1 a + b a + b a − b ⇒ x − a + b = x − a + b a + b a − b ⇒ (x − a + b) 1 − 1 = 0 a + b a − b
⇒ x − a + b = 0
⇒ x = a – b
- If p = 99, then the value of p(p2 + 3p + 3) will be
-
View Hint View Answer Discuss in Forum
p(p2 + 3p + 3)
= p3 + 3p2 + 3p
= p3 + 3p2 + 3p + 1 – 1
= (p + 1)3 – 1
= (99 + 1)3 – 1
= (100)3 – 1 = 1000000 – 1
= 999999Correct Option: A
p(p2 + 3p + 3)
= p3 + 3p2 + 3p
= p3 + 3p2 + 3p + 1 – 1
= (p + 1)3 – 1
= (99 + 1)3 – 1
= (100)3 – 1 = 1000000 – 1
= 999999