Algebra


  1. If a2 + b2 + c2 = ab + bc + ca, where a, b, c are non zero real numbers,
    then the value of  
    a + b
    is
    c









  1. View Hint View Answer Discuss in Forum

    a2 + b2 + c2 = ab + bc + ca
    ⇒  2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
    ⇒  a2 – 2ab + b2 + b2 – 2bc + c2 + c2 – 2ac + a2 = 0
    ⇒  (a – b)2 + (b – c)2 + (c – a)2 = 0
    ∴  a – b = 0 ⇒ a = b
    b – c = 0 ⇒ b = c
    c – a = 0 ⇒ c = a
    ∴  a = b = c

    ∴ 
    a + b
    =
    a + a
    = 2
    ca

    Correct Option: A

    a2 + b2 + c2 = ab + bc + ca
    ⇒  2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
    ⇒  a2 – 2ab + b2 + b2 – 2bc + c2 + c2 – 2ac + a2 = 0
    ⇒  (a – b)2 + (b – c)2 + (c – a)2 = 0
    ∴  a – b = 0 ⇒ a = b
    b – c = 0 ⇒ b = c
    c – a = 0 ⇒ c = a
    ∴  a = b = c

    ∴ 
    a + b
    =
    a + a
    = 2
    ca


  1. If a = x + y, b = x – y, c = x + 2y, then a2 + b2 + c2 – ab – bc – ca is









  1. View Hint View Answer Discuss in Forum

    a – b = x + y – x + y = 2y
    b – c = x – y – x – 2y = – 3y
    c – a = x + 2y – x – y = y
    Now,
    a2 + b2 + c2 – ab – bc – ca

    =
    1
    (2a2 + 2b2 + 2c2 – 2ab – 2bc – 2ca)
    2

    =
    1
    [(a − b)2 + (b − c)2 + (c − a)2]
    2

    =
    1
    [(2y)2 + (−3y)2 + y2]
    2

    =
    1
    × 14y2 = 7y2
    2

    Correct Option: D

    a – b = x + y – x + y = 2y
    b – c = x – y – x – 2y = – 3y
    c – a = x + 2y – x – y = y
    Now,
    a2 + b2 + c2 – ab – bc – ca

    =
    1
    (2a2 + 2b2 + 2c2 – 2ab – 2bc – 2ca)
    2

    =
    1
    [(a − b)2 + (b − c)2 + (c − a)2]
    2

    =
    1
    [(2y)2 + (−3y)2 + y2]
    2

    =
    1
    × 14y2 = 7y2
    2



  1. If  the expression
    x2
    + tx +
    y2
    is a perfect square, then the values of t is
    y24









  1. View Hint View Answer Discuss in Forum

    (a ± b)2 = a2 ± 2ab + b2

    If   a =
    x
    ; b =
    y
    y2

    then,
    ± 2ab = ± 2 ×
    x
    ×
    y
    ± x
    y2

    ∴  tx = ± x
    ⇒  t = ± 1

    Correct Option: A

    (a ± b)2 = a2 ± 2ab + b2

    If   a =
    x
    ; b =
    y
    y2

    then,
    ± 2ab = ± 2 ×
    x
    ×
    y
    ± x
    y2

    ∴  tx = ± x
    ⇒  t = ± 1


  1. If x – y = 2, xy = 24, then the value of (x2 + y2) is :









  1. View Hint View Answer Discuss in Forum

    x2 + y2 = (x – y)2 + 2xy
    = 4 + 2 × 24 = 52

    Correct Option: D

    x2 + y2 = (x – y)2 + 2xy
    = 4 + 2 × 24 = 52



  1. For real a, b, c if a2 + b2 + c2 = ab + bc + ca, then value of
    a + c
    is
    b









  1. View Hint View Answer Discuss in Forum

    a2 + b2 + c2 = ab + bc + ca
    ⇒  2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
    ⇒  a2 – 2ab + b2 + b2 – 2bc + c2 +
    c2 – 2ac + a2 = 0
    ⇒  (a – b)2 + (b – c)2 + (c – a)2 = 0
    ⇒  a – b = 0 ⇒ a = b
    b – c = 0 ⇒ b = c
    c – a = 0 ⇒ c = a
    ⇒  a = b = c

    ∴ 
    a + c
    =
    a + a
    = 2
    ba

    Correct Option: B

    a2 + b2 + c2 = ab + bc + ca
    ⇒  2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
    ⇒  a2 – 2ab + b2 + b2 – 2bc + c2 +
    c2 – 2ac + a2 = 0
    ⇒  (a – b)2 + (b – c)2 + (c – a)2 = 0
    ⇒  a – b = 0 ⇒ a = b
    b – c = 0 ⇒ b = c
    c – a = 0 ⇒ c = a
    ⇒  a = b = c

    ∴ 
    a + c
    =
    a + a
    = 2
    ba