Algebra
- 168. If a + b = 1, find the value of a3 – b3 - ab – (a2 - b2)2
-
View Hint View Answer Discuss in Forum
a + b = 1 (Given)
Expression = a3 + b3 – ab - (a2 – b2)2
Expression = (a + b)(a2 – ab + b2) – ab - (a2 – b2)2
Expression = 1.(a2 – ab + b2) – ab - (a + b)2(a – b)2
Expression = a2 – ab + b2 – ab - (a2 – 2ab + b2)
Expression = a2 – 2ab + b2 –a2 + 2ab - b2 = 0Correct Option: C
a + b = 1 (Given)
Expression = a3 + b3 – ab - (a2 – b2)2
Expression = (a + b)(a2 – ab + b2) – ab - (a2 – b2)2
Expression = 1.(a2 – ab + b2) – ab - (a + b)2(a – b)2
Expression = a2 – ab + b2 – ab - (a2 – 2ab + b2)
Expression = a2 – 2ab + b2 –a2 + 2ab - b2 = 0
-
p-1q2 1 / 3 ÷ p6q-3 1 / 3 = pa qb , then the value of a + b, where p and q are different p3q-2 p-2q3
positive primes, is
-
View Hint View Answer Discuss in Forum
p-1q2 1 / 3 ÷ p6q-3 1 / 3 = pa qb p3q-2 p-2q3
⇒ (p-1 - 3q2 + 2)1 / 3 ÷ (p6 + 2q-3 - 3)1 / 3 = pa qb
⇒ (p-4q4)1 / 3 ÷ (p8q-6)1 / 3 = pa qb⇒ p-4 / 3q4 / 3 = pa qb p8/ 3q-6 / 3
⇒ p{ (-4 / 3) - (8 / 3) }q{ (4 / 3) + (6 / 3) } = paqb
⇒ p-4 q(10 / 3) = pa qb
⇒ a = -4 , b = 10 3
∴ a + b = -4 + 10 = -2 3 3 Correct Option: E
p-1q2 1 / 3 ÷ p6q-3 1 / 3 = pa qb p3q-2 p-2q3
⇒ (p-1 - 3q2 + 2)1 / 3 ÷ (p6 + 2q-3 - 3)1 / 3 = pa qb
⇒ (p-4q4)1 / 3 ÷ (p8q-6)1 / 3 = pa qb⇒ p-4 / 3q4 / 3 = pa qb p8/ 3q-6 / 3
⇒ p{ (-4 / 3) - (8 / 3) }q{ (4 / 3) + (6 / 3) } = paqb
⇒ p-4 q(10 / 3) = pa qb
⇒ a = -4 , b = 10 3
∴ a + b = -4 + 10 = -2 3 3
-
If a - 1 = 5 , then the value of (a - 3)3 - 1 is (a - 3) (a - 3)3
-
View Hint View Answer Discuss in Forum
a - 1 = 5 (a - 3) ⇒ (a - 3) - 1 = 5 - 3 = 2 (a - 3)
On cubing both sides,⇒ (a - 3) - 1 3 = 8 (a - 3) ⇒ (a - 3)3 - 1 - 3 × (a - 3) × 1 (a - 3) - 1 = 8 (a - 3)3 (a - 3) (a - 3)
[∴ (a – b)3 = a3 – b3 – 3ab(a – b)]⇒ (a - 3)3 - 1 - 3 × 2 = 8 (a - 3)3 ⇒ (a - 3)3 - 1 = 8 + 6 = 14 (a - 3)3 Correct Option: D
a - 1 = 5 (a - 3) ⇒ (a - 3) - 1 = 5 - 3 = 2 (a - 3)
On cubing both sides,⇒ (a - 3) - 1 3 = 8 (a - 3) ⇒ (a - 3)3 - 1 - 3 × (a - 3) × 1 (a - 3) - 1 = 8 (a - 3)3 (a - 3) (a - 3)
[∴ (a – b)3 = a3 – b3 – 3ab(a – b)]⇒ (a - 3)3 - 1 - 3 × 2 = 8 (a - 3)3 ⇒ (a - 3)3 - 1 = 8 + 6 = 14 (a - 3)3
-
If (3x – 2y) : (2x + 3y) = 5 : 6, then one of the values of ³√x + ³√y 2 is ³√x - ³√y
-
View Hint View Answer Discuss in Forum
∴ 3x - 2y = 5 3x - 2y 6
⇒ 18x – 12y = 10x +15y
⇒ 18x – 10x = 12y + 15y
⇒ 8x = 27y⇒ x = 27 y 8
On taking cube root of both sides,³√x = ³√27 = 3 ³√y ³√8 2
By componendo and dividendo,³√x + ³√y = 3 + 2 = 5 ³√x - ³√y 3 - 2 1
On squaring both sides,⇒ ³√x + ³√y 2 = 5 × 5 = 25 ³√x - ³√y
Correct Option: C
∴ 3x - 2y = 5 3x - 2y 6
⇒ 18x – 12y = 10x +15y
⇒ 18x – 10x = 12y + 15y
⇒ 8x = 27y⇒ x = 27 y 8
On taking cube root of both sides,³√x = ³√27 = 3 ³√y ³√8 2
By componendo and dividendo,³√x + ³√y = 3 + 2 = 5 ³√x - ³√y 3 - 2 1
On squaring both sides,⇒ ³√x + ³√y 2 = 5 × 5 = 25 ³√x - ³√y
-
If 144 = 14.4 , then the value of x is 0.144 x
-
View Hint View Answer Discuss in Forum
144 = 14.4 0.144 x
⇒ 144 × x = 14.4 × 0.144⇒ x = 14.4 × 0.144 144 = 144 × 144 = 0.0144 144 × 10000 Correct Option: D
144 = 14.4 0.144 x
⇒ 144 × x = 14.4 × 0.144⇒ x = 14.4 × 0.144 144 = 144 × 144 = 0.0144 144 × 10000