Algebra


  1. 168. If a + b = 1, find the value of a3 – b3 - ab – (a2 - b2)2









  1. View Hint View Answer Discuss in Forum

    a + b = 1 (Given)
    Expression = a3 + b3 – ab - (a2 – b2)2
    Expression = (a + b)(a2 – ab + b2) – ab - (a2 – b2)2
    Expression = 1.(a2 – ab + b2) – ab - (a + b)2(a – b)2
    Expression = a2 – ab + b2 – ab - (a2 – 2ab + b2)
    Expression = a2 – 2ab + b2 –a2 + 2ab - b2 = 0

    Correct Option: C

    a + b = 1 (Given)
    Expression = a3 + b3 – ab - (a2 – b2)2
    Expression = (a + b)(a2 – ab + b2) – ab - (a2 – b2)2
    Expression = 1.(a2 – ab + b2) – ab - (a + b)2(a – b)2
    Expression = a2 – ab + b2 – ab - (a2 – 2ab + b2)
    Expression = a2 – 2ab + b2 –a2 + 2ab - b2 = 0


  1. p-1q2
    1 / 3 ÷
    p6q-3
    1 / 3 = pa qb , then the value of a + b, where p and q are different
    p3q-2p-2q3

    positive primes, is











  1. View Hint View Answer Discuss in Forum

    p-1q2
    1 / 3 ÷
    p6q-3
    1 / 3 = pa qb
    p3q-2p-2q3

    ⇒ (p-1 - 3q2 + 2)1 / 3 ÷ (p6 + 2q-3 - 3)1 / 3 = pa qb
    ⇒ (p-4q4)1 / 3 ÷ (p8q-6)1 / 3 = pa qb
    p-4 / 3q4 / 3
    = pa qb
    p8/ 3q-6 / 3

    ⇒ p{ (-4 / 3) - (8 / 3) }q{ (4 / 3) + (6 / 3) } = paqb
    ⇒ p-4 q(10 / 3) = pa qb
    ⇒ a = -4 , b =
    10
    3

    ∴ a + b = -4 +
    10
    =
    -2
    33

    Correct Option: E

    p-1q2
    1 / 3 ÷
    p6q-3
    1 / 3 = pa qb
    p3q-2p-2q3

    ⇒ (p-1 - 3q2 + 2)1 / 3 ÷ (p6 + 2q-3 - 3)1 / 3 = pa qb
    ⇒ (p-4q4)1 / 3 ÷ (p8q-6)1 / 3 = pa qb
    p-4 / 3q4 / 3
    = pa qb
    p8/ 3q-6 / 3

    ⇒ p{ (-4 / 3) - (8 / 3) }q{ (4 / 3) + (6 / 3) } = paqb
    ⇒ p-4 q(10 / 3) = pa qb
    ⇒ a = -4 , b =
    10
    3

    ∴ a + b = -4 +
    10
    =
    -2
    33



  1. If a -
    1
    = 5 , then the value of (a - 3)3 -
    1
    is
    (a - 3)(a - 3)3










  1. View Hint View Answer Discuss in Forum

    a -
    1
    = 5
    (a - 3)

    ⇒ (a - 3) -
    1
    = 5 - 3 = 2
    (a - 3)

    On cubing both sides,
    (a - 3) -
    1
    3 = 8
    (a - 3)

    ⇒ (a - 3)3 -
    1
    - 3 × (a - 3) ×
    1
    (a - 3) -
    1
    = 8
    (a - 3)3(a - 3)(a - 3)

    [∴ (a – b)3 = a3 – b3 – 3ab(a – b)]
    ⇒ (a - 3)3 -
    1
    - 3 × 2 = 8
    (a - 3)3

    ⇒ (a - 3)3 -
    1
    = 8 + 6 = 14
    (a - 3)3

    Correct Option: D

    a -
    1
    = 5
    (a - 3)

    ⇒ (a - 3) -
    1
    = 5 - 3 = 2
    (a - 3)

    On cubing both sides,
    (a - 3) -
    1
    3 = 8
    (a - 3)

    ⇒ (a - 3)3 -
    1
    - 3 × (a - 3) ×
    1
    (a - 3) -
    1
    = 8
    (a - 3)3(a - 3)(a - 3)

    [∴ (a – b)3 = a3 – b3 – 3ab(a – b)]
    ⇒ (a - 3)3 -
    1
    - 3 × 2 = 8
    (a - 3)3

    ⇒ (a - 3)3 -
    1
    = 8 + 6 = 14
    (a - 3)3


  1. If (3x – 2y) : (2x + 3y) = 5 : 6, then one of the values of
    ³√x + ³√y
    2 is
    ³√x - ³√y










  1. View Hint View Answer Discuss in Forum

    3x - 2y
    =
    5
    3x - 2y6

    ⇒ 18x – 12y = 10x +15y
    ⇒ 18x – 10x = 12y + 15y
    ⇒ 8x = 27y
    x
    =
    27
    y8

    On taking cube root of both sides,
    ³√x
    =
    ³√27
    =
    3
    ³√y³√82

    By componendo and dividendo,
    ³√x + ³√y
    =
    3 + 2
    =
    5
    ³√x - ³√y3 - 21

    On squaring both sides,
    ³√x + ³√y
    2 = 5 × 5 = 25
    ³√x - ³√y

    Correct Option: C

    3x - 2y
    =
    5
    3x - 2y6

    ⇒ 18x – 12y = 10x +15y
    ⇒ 18x – 10x = 12y + 15y
    ⇒ 8x = 27y
    x
    =
    27
    y8

    On taking cube root of both sides,
    ³√x
    =
    ³√27
    =
    3
    ³√y³√82

    By componendo and dividendo,
    ³√x + ³√y
    =
    3 + 2
    =
    5
    ³√x - ³√y3 - 21

    On squaring both sides,
    ³√x + ³√y
    2 = 5 × 5 = 25
    ³√x - ³√y



  1. If  
    144
    =
    14.4
      , then the value of x is
    0.144x









  1. View Hint View Answer Discuss in Forum

    144
    =
    14.4
    0.144x

    ⇒  144 × x = 14.4 × 0.144
    ⇒  x =
    14.4 × 0.144
    144

    =
    144 × 144
    = 0.0144
    144 × 10000

    Correct Option: D

    144
    =
    14.4
    0.144x

    ⇒  144 × x = 14.4 × 0.144
    ⇒  x =
    14.4 × 0.144
    144

    =
    144 × 144
    = 0.0144
    144 × 10000