Algebra


  1. If   x +
    1
    = 2, then the value of   x2 +
    1
    is equal to ?
    xx6









  1. View Hint View Answer Discuss in Forum

    x +
    1
    = 2
    x

    ⇒  x2 + 1 = 2x ⇒ x2 – 2x + 1 = 0
    ⇒  (x – 1)2 = 0 ⇒ x – 1 = 0
    ⇒  x = 1
    ∴  x2 +
    1
    = 1 +
    2
    = 1 + 2 = 3
    x61

    Correct Option: D

    x +
    1
    = 2
    x

    ⇒  x2 + 1 = 2x ⇒ x2 – 2x + 1 = 0
    ⇒  (x – 1)2 = 0 ⇒ x – 1 = 0
    ⇒  x = 1
    ∴  x2 +
    1
    = 1 +
    2
    = 1 + 2 = 3
    x61


  1. If a + b = 3, then the value of a3 + b3 + 9ab – 27 is









  1. View Hint View Answer Discuss in Forum

    a + b = 3
    On cubing both sides,
    (a + b)3 = 33
    ⇒  a3 + b3 + 3ab (a + b) = 27
    ⇒  a3 + b3 + 3ab × 3 = 27
    ⇒  a3 + b3 + 9ab – 27 = 0

    Correct Option: C

    a + b = 3
    On cubing both sides,
    (a + b)3 = 33
    ⇒  a3 + b3 + 3ab (a + b) = 27
    ⇒  a3 + b3 + 3ab × 3 = 27
    ⇒  a3 + b3 + 9ab – 27 = 0



  1. If p = 3 +
    1
    , the value of p4 +
    1
    is :
    pp4









  1. View Hint View Answer Discuss in Forum

    p = 3 +
    1
    (Given)
    p

    ∴ p -
    1
    = 3
    p

    On squaring both sides,
    p -
    1
    2 = (3)2 = 9
    p

    ⇒ p2 +
    1
    - 2 = 9
    p2

    ⇒ p2 +
    1
    = 9 + 2 = 11
    p2

    On squaring again,
    p2 +
    1
    2 = (11)2 = 121
    p2

    ⇒ p4 +
    1
    + 2 = 121
    p4

    ⇒ p4 +
    1
    = 121 - 2 = 119
    p4

    Correct Option: D

    p = 3 +
    1
    (Given)
    p

    ∴ p -
    1
    = 3
    p

    On squaring both sides,
    p -
    1
    2 = (3)2 = 9
    p

    ⇒ p2 +
    1
    - 2 = 9
    p2

    ⇒ p2 +
    1
    = 9 + 2 = 11
    p2

    On squaring again,
    p2 +
    1
    2 = (11)2 = 121
    p2

    ⇒ p4 +
    1
    + 2 = 121
    p4

    ⇒ p4 +
    1
    = 121 - 2 = 119
    p4


  1. If x = 12 and y = 4, then the value of (x + y)x/y is









  1. View Hint View Answer Discuss in Forum

    x = 12 and y = 4
    ∴  (x + y)x/y = (12 + 4)12/4 = (16)3
    = 16 × 16 × 16 = 4096

    Correct Option: C

    x = 12 and y = 4
    ∴  (x + y)x/y = (12 + 4)12/4 = (16)3
    = 16 × 16 × 16 = 4096



  1. If  x = ³√28 , y = ³√27, then the value of x + y –
    1
    is
    x2 + xy + y2









  1. View Hint View Answer Discuss in Forum

    x = ³√28
    ∴  x3 = (³√28)3 = 28
    Again, y = ³√27
    ∴  y3 = (³√27)3 = 27

    ∴  Expression = (x + y) –
    1
    x2 + xy + y2

    = (x + y) –
    (x – y)
    (x – y)(x2 + xy + y2)

    = (x + y) –
    (x – y)
    x3 – y3

    = (x + y) –
    (x – y)
    28 – 27

    = x + y – x + y
    = 2y = 2 × ³√27 = 2 × 3 = 6

    Correct Option: C

    x = ³√28
    ∴  x3 = (³√28)3 = 28
    Again, y = ³√27
    ∴  y3 = (³√27)3 = 27

    ∴  Expression = (x + y) –
    1
    x2 + xy + y2

    = (x + y) –
    (x – y)
    (x – y)(x2 + xy + y2)

    = (x + y) –
    (x – y)
    x3 – y3

    = (x + y) –
    (x – y)
    28 – 27

    = x + y – x + y
    = 2y = 2 × ³√27 = 2 × 3 = 6