Algebra
-
If x + 1 = 2, then the value of x2 + 1 is equal to ? x x6
-
View Hint View Answer Discuss in Forum
x + 1 = 2 x
⇒ x2 + 1 = 2x ⇒ x2 – 2x + 1 = 0
⇒ (x – 1)2 = 0 ⇒ x – 1 = 0
⇒ x = 1∴ x2 + 1 = 1 + 2 = 1 + 2 = 3 x6 1 Correct Option: D
x + 1 = 2 x
⇒ x2 + 1 = 2x ⇒ x2 – 2x + 1 = 0
⇒ (x – 1)2 = 0 ⇒ x – 1 = 0
⇒ x = 1∴ x2 + 1 = 1 + 2 = 1 + 2 = 3 x6 1
- If a + b = 3, then the value of a3 + b3 + 9ab – 27 is
-
View Hint View Answer Discuss in Forum
a + b = 3
On cubing both sides,
(a + b)3 = 33
⇒ a3 + b3 + 3ab (a + b) = 27
⇒ a3 + b3 + 3ab × 3 = 27
⇒ a3 + b3 + 9ab – 27 = 0Correct Option: C
a + b = 3
On cubing both sides,
(a + b)3 = 33
⇒ a3 + b3 + 3ab (a + b) = 27
⇒ a3 + b3 + 3ab × 3 = 27
⇒ a3 + b3 + 9ab – 27 = 0
-
If p = 3 + 1 , the value of p4 + 1 is : p p4
-
View Hint View Answer Discuss in Forum
p = 3 + 1 (Given) p ∴ p - 1 = 3 p
On squaring both sides,⇒ p - 1 2 = (3)2 = 9 p ⇒ p2 + 1 - 2 = 9 p2 ⇒ p2 + 1 = 9 + 2 = 11 p2
On squaring again,⇒ p2 + 1 2 = (11)2 = 121 p2 ⇒ p4 + 1 + 2 = 121 p4 ⇒ p4 + 1 = 121 - 2 = 119 p4 Correct Option: D
p = 3 + 1 (Given) p ∴ p - 1 = 3 p
On squaring both sides,⇒ p - 1 2 = (3)2 = 9 p ⇒ p2 + 1 - 2 = 9 p2 ⇒ p2 + 1 = 9 + 2 = 11 p2
On squaring again,⇒ p2 + 1 2 = (11)2 = 121 p2 ⇒ p4 + 1 + 2 = 121 p4 ⇒ p4 + 1 = 121 - 2 = 119 p4
- If x = 12 and y = 4, then the value of (x + y)x/y is
-
View Hint View Answer Discuss in Forum
x = 12 and y = 4
∴ (x + y)x/y = (12 + 4)12/4 = (16)3
= 16 × 16 × 16 = 4096Correct Option: C
x = 12 and y = 4
∴ (x + y)x/y = (12 + 4)12/4 = (16)3
= 16 × 16 × 16 = 4096
-
If x = ³√28 , y = ³√27, then the value of x + y – 1 is x2 + xy + y2
-
View Hint View Answer Discuss in Forum
x = ³√28
∴ x3 = (³√28)3 = 28
Again, y = ³√27
∴ y3 = (³√27)3 = 27∴ Expression = (x + y) – 1 x2 + xy + y2 = (x + y) – (x – y) (x – y)(x2 + xy + y2) = (x + y) – (x – y) x3 – y3 = (x + y) – (x – y) 28 – 27
= x + y – x + y
= 2y = 2 × ³√27 = 2 × 3 = 6Correct Option: C
x = ³√28
∴ x3 = (³√28)3 = 28
Again, y = ³√27
∴ y3 = (³√27)3 = 27∴ Expression = (x + y) – 1 x2 + xy + y2 = (x + y) – (x – y) (x – y)(x2 + xy + y2) = (x + y) – (x – y) x3 – y3 = (x + y) – (x – y) 28 – 27
= x + y – x + y
= 2y = 2 × ³√27 = 2 × 3 = 6