Algebra


  1. If 2x = √a +
    1
    , a > 0, then the value of
    x
    is
    ax − √x2 − 1









  1. View Hint View Answer Discuss in Forum

    2x = √a +
    1
    a

    On squaring both sides,
    4x2 = a +
    1
    + 2
    a

    ⇒  4x2 – 4 = a +
    1
    + 2 – 4
    a

    = a +
    1
    – 2
    a


    = √a
    1
    a

    ∴  √x2 − 1 =
    1
    a
    1
    2a

    ∴  Expression =
    x2 − 1
    x − √x2 − 1


    =
    1
    (a − 1)
    2

    Correct Option: C

    2x = √a +
    1
    a

    On squaring both sides,
    4x2 = a +
    1
    + 2
    a

    ⇒  4x2 – 4 = a +
    1
    + 2 – 4
    a

    = a +
    1
    – 2
    a


    = √a
    1
    a

    ∴  √x2 − 1 =
    1
    a
    1
    2a

    ∴  Expression =
    x2 − 1
    x − √x2 − 1


    =
    1
    (a − 1)
    2


  1. If 1 +
    27
    = 1 +
    x
    , then x equals
    16913









  1. View Hint View Answer Discuss in Forum


    ⇒ 
    14
    = 1 +
    x
    1313

    ⇒  1 +
    1
    = 1 +
    x
    1313

    ⇒  x = 1

    Correct Option: A


    ⇒ 
    14
    = 1 +
    x
    1313

    ⇒  1 +
    1
    = 1 +
    x
    1313

    ⇒  x = 1



  1. If  
    2p
    =
    1
    , then the value of p +
    1
    is
    pr − 2p + 14p









  1. View Hint View Answer Discuss in Forum

    2p
    =
    1
    p2 − 2p + 14

    On dividing numerator and denominator by p, we get,
    2p
    =
    1
    p − 2 + (1/p)4

    ⇒  p +
    1
    – 2 = 8
    p

    ⇒  p +
    1
    = 8 + 2 = 10
    p

    Correct Option: D

    2p
    =
    1
    p2 − 2p + 14

    On dividing numerator and denominator by p, we get,
    2p
    =
    1
    p − 2 + (1/p)4

    ⇒  p +
    1
    – 2 = 8
    p

    ⇒  p +
    1
    = 8 + 2 = 10
    p


  1. If 2s = a + b + c, then the value of s(s – c) + (s – a) (s – b) is









  1. View Hint View Answer Discuss in Forum

    2s = a + b + c

    ∴  s (s – c) =
    a + b + c
    a + b + c
    − c
    22

    =
    (a + b + c)(a + b − c)
    4

    Again, (s – a) (s – b)
    =
    1
    (2s – 2a) (2s – 2b)
    4

    =
    1
    (a + b + c – 2a) (a + b + c – 2b)
    4

    =
    1
    (b + c – a) (a + c – b)
    4

    ∴  s (s – c) + (s – a) (s – b)
    =
    1
    [(a + b + c) (a + b – c) + (b + c – a) (a + c – b)]
    4

    =
    1
    [(a + b)2 – c2 + ab + ac – a2 + bc + c2 – ac – b2 – bc + ab]
    4

    =
    1
    (a2 + b2 + 2ab – c2 + ab + ac – a2 + bc + c2 – ac – b2 – bc + ab)
    4

    =
    1
    × 4ab = ab
    4

    Correct Option: A

    2s = a + b + c

    ∴  s (s – c) =
    a + b + c
    a + b + c
    − c
    22

    =
    (a + b + c)(a + b − c)
    4

    Again, (s – a) (s – b)
    =
    1
    (2s – 2a) (2s – 2b)
    4

    =
    1
    (a + b + c – 2a) (a + b + c – 2b)
    4

    =
    1
    (b + c – a) (a + c – b)
    4

    ∴  s (s – c) + (s – a) (s – b)
    =
    1
    [(a + b + c) (a + b – c) + (b + c – a) (a + c – b)]
    4

    =
    1
    [(a + b)2 – c2 + ab + ac – a2 + bc + c2 – ac – b2 – bc + ab]
    4

    =
    1
    (a2 + b2 + 2ab – c2 + ab + ac – a2 + bc + c2 – ac – b2 – bc + ab)
    4

    =
    1
    × 4ab = ab
    4



  1. If
    3 − 5x
    +
    3 − 5y
    +
    3 − 5z
    = 0, the value of
    2
    +
    2
    +
    2
    is
    2x2y2zxyz









  1. View Hint View Answer Discuss in Forum

    3 − 5x
    +
    3 − 5y
    +
    3 − 5z
    = 0
    2x2y2z

    ⇒ 
    3
    5x
    +
    3
    5y
    +
    3
    5z
    = 0
    2x2x2y2y2z2z

    ⇒ 
    3
    +
    3
    +
    3
    5
    5
    5
    = 0
    2x2y2z222

    ⇒ 
    3
    +
    3
    +
    3
    =
    3 × 5
    2x2y2z2

    ⇒ 
    1
    +
    1
    +
    1
    =
    5
    2x2y2z2

    ⇒ 
    4
    +
    4
    +
    4
    =
    4 × 5
    2x2y2z2

    ⇒ 
    2
    +
    2
    +
    2
    = 10
    xyz

    Correct Option: C

    3 − 5x
    +
    3 − 5y
    +
    3 − 5z
    = 0
    2x2y2z

    ⇒ 
    3
    5x
    +
    3
    5y
    +
    3
    5z
    = 0
    2x2x2y2y2z2z

    ⇒ 
    3
    +
    3
    +
    3
    5
    5
    5
    = 0
    2x2y2z222

    ⇒ 
    3
    +
    3
    +
    3
    =
    3 × 5
    2x2y2z2

    ⇒ 
    1
    +
    1
    +
    1
    =
    5
    2x2y2z2

    ⇒ 
    4
    +
    4
    +
    4
    =
    4 × 5
    2x2y2z2

    ⇒ 
    2
    +
    2
    +
    2
    = 10
    xyz