Algebra
-
If 2x = √a + 1 , a > 0, then the value of x is √a x − √x2 − 1
-
View Hint View Answer Discuss in Forum
2x = √a + 1 √a
On squaring both sides,4x2 = a + 1 + 2 a ⇒ 4x2 – 4 = a + 1 + 2 – 4 a = a + 1 – 2 a = √a − 1 √a ∴ √x2 − 1 = 1 √a − 1 2 √a ∴ Expression = √x2 − 1 x − √x2 − 1 = 1 (a − 1) 2 Correct Option: C
2x = √a + 1 √a
On squaring both sides,4x2 = a + 1 + 2 a ⇒ 4x2 – 4 = a + 1 + 2 – 4 a = a + 1 – 2 a = √a − 1 √a ∴ √x2 − 1 = 1 √a − 1 2 √a ∴ Expression = √x2 − 1 x − √x2 − 1 = 1 (a − 1) 2
-
If √ 1 + 27 = 1 + x , then x equals 169 13
-
View Hint View Answer Discuss in Forum
⇒ 14 = 1 + x 13 13 ⇒ 1 + 1 = 1 + x 13 13
⇒ x = 1Correct Option: A
⇒ 14 = 1 + x 13 13 ⇒ 1 + 1 = 1 + x 13 13
⇒ x = 1
-
If 2p = 1 , then the value of p + 1 is pr − 2p + 1 4 p
-
View Hint View Answer Discuss in Forum
2p = 1 p2 − 2p + 1 4
On dividing numerator and denominator by p, we get,2p = 1 p − 2 + (1/p) 4 ⇒ p + 1 – 2 = 8 p ⇒ p + 1 = 8 + 2 = 10 p Correct Option: D
2p = 1 p2 − 2p + 1 4
On dividing numerator and denominator by p, we get,2p = 1 p − 2 + (1/p) 4 ⇒ p + 1 – 2 = 8 p ⇒ p + 1 = 8 + 2 = 10 p
- If 2s = a + b + c, then the value of s(s – c) + (s – a) (s – b) is
-
View Hint View Answer Discuss in Forum
2s = a + b + c
∴ s (s – c) = a + b + c a + b + c − c 2 2 = (a + b + c)(a + b − c) 4
Again, (s – a) (s – b)= 1 (2s – 2a) (2s – 2b) 4 = 1 (a + b + c – 2a) (a + b + c – 2b) 4 = 1 (b + c – a) (a + c – b) 4
∴ s (s – c) + (s – a) (s – b)= 1 [(a + b + c) (a + b – c) + (b + c – a) (a + c – b)] 4 = 1 [(a + b)2 – c2 + ab + ac – a2 + bc + c2 – ac – b2 – bc + ab] 4 = 1 (a2 + b2 + 2ab – c2 + ab + ac – a2 + bc + c2 – ac – b2 – bc + ab) 4 = 1 × 4ab = ab 4 Correct Option: A
2s = a + b + c
∴ s (s – c) = a + b + c a + b + c − c 2 2 = (a + b + c)(a + b − c) 4
Again, (s – a) (s – b)= 1 (2s – 2a) (2s – 2b) 4 = 1 (a + b + c – 2a) (a + b + c – 2b) 4 = 1 (b + c – a) (a + c – b) 4
∴ s (s – c) + (s – a) (s – b)= 1 [(a + b + c) (a + b – c) + (b + c – a) (a + c – b)] 4 = 1 [(a + b)2 – c2 + ab + ac – a2 + bc + c2 – ac – b2 – bc + ab] 4 = 1 (a2 + b2 + 2ab – c2 + ab + ac – a2 + bc + c2 – ac – b2 – bc + ab) 4 = 1 × 4ab = ab 4
-
If 3 − 5x + 3 − 5y + 3 − 5z = 0, the value of 2 + 2 + 2 is 2x 2y 2z x y z
-
View Hint View Answer Discuss in Forum
3 − 5x + 3 − 5y + 3 − 5z = 0 2x 2y 2z ⇒ 3 − 5x + 3 − 5y + 3 − 5z = 0 2x 2x 2y 2y 2z 2z ⇒ 3 + 3 + 3 − 5 − 5 − 5 = 0 2x 2y 2z 2 2 2 ⇒ 3 + 3 + 3 = 3 × 5 2x 2y 2z 2 ⇒ 1 + 1 + 1 = 5 2x 2y 2z 2 ⇒ 4 + 4 + 4 = 4 × 5 2x 2y 2z 2 ⇒ 2 + 2 + 2 = 10 x y z Correct Option: C
3 − 5x + 3 − 5y + 3 − 5z = 0 2x 2y 2z ⇒ 3 − 5x + 3 − 5y + 3 − 5z = 0 2x 2x 2y 2y 2z 2z ⇒ 3 + 3 + 3 − 5 − 5 − 5 = 0 2x 2y 2z 2 2 2 ⇒ 3 + 3 + 3 = 3 × 5 2x 2y 2z 2 ⇒ 1 + 1 + 1 = 5 2x 2y 2z 2 ⇒ 4 + 4 + 4 = 4 × 5 2x 2y 2z 2 ⇒ 2 + 2 + 2 = 10 x y z