Algebra
- If p3 – q3 = (p – q) {(p – q)2 + x p q)} then value of x is
-
View Hint View Answer Discuss in Forum
a3 − b3 = (a – b) (a2 + ab + b2)
= (a – b) ((a + b)2 – ab)
∴ On comparing with
p3 – q3 = (p – q) ((p – q)2 + x pq) x
= 3Correct Option: C
a3 − b3 = (a – b) (a2 + ab + b2)
= (a – b) ((a + b)2 – ab)
∴ On comparing with
p3 – q3 = (p – q) ((p – q)2 + x pq) x
= 3
- If a2 = by + cz, b2 = cz + ax, c2 = ax + by, then the value of
x + y + z is a + x b + y c + z
-
View Hint View Answer Discuss in Forum
a2 = by + cz
⇒ a2 + ax = ax + by + cz
⇒ a (a + x) = ax + by + cz⇒ 1 = a a + x ax + by + cz
Similarly,
b2 = cz + ax
⇒ b2 + by = by + cz + ax
⇒ b (b + y) = ax + by + cz⇒ 1 = b b + y ax + by + cz
c2 = ax + by
⇒ c2 + cz = ax + by + cz
⇒ c (c + z) = ax + by + cz⇒ 1 = c c + z ax + by + cz = ax + by + cz ax + by + cz ax + by + cz ax + by + cz = ax + by + cz = 1 ax + by + cz Correct Option: A
a2 = by + cz
⇒ a2 + ax = ax + by + cz
⇒ a (a + x) = ax + by + cz⇒ 1 = a a + x ax + by + cz
Similarly,
b2 = cz + ax
⇒ b2 + by = by + cz + ax
⇒ b (b + y) = ax + by + cz⇒ 1 = b b + y ax + by + cz
c2 = ax + by
⇒ c2 + cz = ax + by + cz
⇒ c (c + z) = ax + by + cz⇒ 1 = c c + z ax + by + cz = ax + by + cz ax + by + cz ax + by + cz ax + by + cz = ax + by + cz = 1 ax + by + cz
- If p3 – q3 = (p – q) {(p + q)2 – x p q} then the value of x is
-
View Hint View Answer Discuss in Forum
a3 − b3 = (a – b) (a2 + ab + b2)
= (a – b) {(a + b)2 – ab}
On comparing with
p3 – q3 = (p – q) {(p + q)2 – x pq)}, x
= 1Correct Option: A
a3 − b3 = (a – b) (a2 + ab + b2)
= (a – b) {(a + b)2 – ab}
On comparing with
p3 – q3 = (p – q) {(p + q)2 – x pq)}, x
= 1
- If a – b = 1 and a3 – b3 = 61, then the value of ab will be
-
View Hint View Answer Discuss in Forum
a3 − b3
= (a – b)3 + 3ab (a – b)
⇒ 61 = 1 + 3ab × 1
⇒ 61 – 1 = 3ab = 60⇒ ab = 60 = 20 3 Correct Option: B
a3 − b3
= (a – b)3 + 3ab (a – b)
⇒ 61 = 1 + 3ab × 1
⇒ 61 – 1 = 3ab = 60⇒ ab = 60 = 20 3
-
If a + b = 1, then the value of a3 + b3 will be b a
-
View Hint View Answer Discuss in Forum
a + b = 1 b a ⇒ a2 + b2 = 1 ab
⇒ a2 + b2 = ab
⇒ a2 – ab + b2 = 0
∴ a3 + b3 = (a + b) (a2 – ab + b2)
= 0Correct Option: B
a + b = 1 b a ⇒ a2 + b2 = 1 ab
⇒ a2 + b2 = ab
⇒ a2 – ab + b2 = 0
∴ a3 + b3 = (a + b) (a2 – ab + b2)
= 0