Algebra


  1. If a + b = 1, then a4 + b4 – a3 – b3 – 2a2b2 + ab is equal to









  1. View Hint View Answer Discuss in Forum

    a4 + b4 – a3 – b3 – 2a2b2 + ab
    = a4 + b4 – 2a2b2 – a3 – b3 + ab
    = (a + b)2 (a – b)2 – (a + b) (a2 – ab + b2) + ab
    = (a – b)2 – a2 + ab – b2 + ab
    [∵  a + b = 1]
    = (a – b)2 – (a – b)2 = 0

    Correct Option: D

    a4 + b4 – a3 – b3 – 2a2b2 + ab
    = a4 + b4 – 2a2b2 – a3 – b3 + ab
    = (a + b)2 (a – b)2 – (a + b) (a2 – ab + b2) + ab
    = (a – b)2 – a2 + ab – b2 + ab
    [∵  a + b = 1]
    = (a – b)2 – (a – b)2 = 0


  1. A complete factorisation of (x4 + 64) is









  1. View Hint View Answer Discuss in Forum

    x4 + 64 = (x2)2 + (8)2
    = (x2 + 8)2 – 2 × 8x2
    [∵  a2 + b2 = (a + b)2 – 2ab]
    = (x2 + 8)2 – (4x)2
    = (x2 + 4x + 8) (x2 – 4x + 8)

    Correct Option: D

    x4 + 64 = (x2)2 + (8)2
    = (x2 + 8)2 – 2 × 8x2
    [∵  a2 + b2 = (a + b)2 – 2ab]
    = (x2 + 8)2 – (4x)2
    = (x2 + 4x + 8) (x2 – 4x + 8)



  1. If k is the largest possible real number such that p4 + q4 = (p2 + kpq + q2)(p2 – kpq + q2), then the value of k is









  1. View Hint View Answer Discuss in Forum

    p4 + q4 = (p2)2 + (q2)2
    = (p2 + q2)2 – 2p2q2
    = (p2 + q2)2 – (√2pq)2
    = (p2 + q2 + √2pq)(p2 + q2 – √2pq)

    Correct Option: D

    p4 + q4 = (p2)2 + (q2)2
    = (p2 + q2)2 – 2p2q2
    = (p2 + q2)2 – (√2pq)2
    = (p2 + q2 + √2pq)(p2 + q2 – √2pq)


  1. If a + b + c = 15 and
    1
    +
    1
    +
    1
    =
    71
    ,then the value of a3 + b3 + c3 – 3abc is
    abcabc









  1. View Hint View Answer Discuss in Forum

    a + b + c = 15,

    1
    +
    1
    +
    1
    =
    71
    abcabc

    ⇒ 
    bc + ac + ab
    =
    71
    abcabc

    ⇒  ab + bc + ca = 71
    ∴  a3 + b3 + c3 – 3abc = (a + b + c) (a2 + b2 + c2 – ab – bc – ac)
    = (a + b + c) {(a + b + c)2 – 3 (ab + bc + ac)}
    = 15 (152 – 3 × 71)
    = 15 (225 – 213) = 15 × 12
    = 180

    Correct Option: B

    a + b + c = 15,

    1
    +
    1
    +
    1
    =
    71
    abcabc

    ⇒ 
    bc + ac + ab
    =
    71
    abcabc

    ⇒  ab + bc + ca = 71
    ∴  a3 + b3 + c3 – 3abc = (a + b + c) (a2 + b2 + c2 – ab – bc – ac)
    = (a + b + c) {(a + b + c)2 – 3 (ab + bc + ac)}
    = 15 (152 – 3 × 71)
    = 15 (225 – 213) = 15 × 12
    = 180



  1. If  a +
    1
    2 = 3, then the value of a18 + a12 + a6 + 1 is
    a









  1. View Hint View Answer Discuss in Forum

    a +
    1
    2= 3
    a

    ⇒  a +
    1
    = √3
    a

    On cubing both sides,
    a +
    1
    3 = (√3)3
    a

    ⇒  a3 +
    1
    + 3a +
    1
    = 3√3
    a3a

    ⇒  a3 +
    1
    + 3√3 = 3√3
    a3

    ⇒  a3 +
    1
    = 3√3 − 3√3 = 0
    a3

    ∴  a6
    1
    a6

    ⇒ 
    a6 + 1
    = 0
    a3

    ⇒  a6 + 1 = 0
    ∴  a18 + a12 + a6 + 1
    = a12 (a6 + 1) + 1 (a6 + 1)
    = (a6 + 1)(a12 + 1) = 0

    Correct Option: C

    a +
    1
    2= 3
    a

    ⇒  a +
    1
    = √3
    a

    On cubing both sides,
    a +
    1
    3 = (√3)3
    a

    ⇒  a3 +
    1
    + 3a +
    1
    = 3√3
    a3a

    ⇒  a3 +
    1
    + 3√3 = 3√3
    a3

    ⇒  a3 +
    1
    = 3√3 − 3√3 = 0
    a3

    ∴  a6
    1
    a6

    ⇒ 
    a6 + 1
    = 0
    a3

    ⇒  a6 + 1 = 0
    ∴  a18 + a12 + a6 + 1
    = a12 (a6 + 1) + 1 (a6 + 1)
    = (a6 + 1)(a12 + 1) = 0