Home » Aptitude » Algebra » Question
  1. If a + b = 1, then a4 + b4 – a3 – b3 – 2a2b2 + ab is equal to
    1. 1
    2. 2
    3. 4
    4. 0
Correct Option: D

a4 + b4 – a3 – b3 – 2a2b2 + ab
= a4 + b4 – 2a2b2 – a3 – b3 + ab
= (a + b)2 (a – b)2 – (a + b) (a2 – ab + b2) + ab
= (a – b)2 – a2 + ab – b2 + ab
[∵  a + b = 1]
= (a – b)2 – (a – b)2 = 0



Your comments will be displayed only after manual approval.