If a + b = 1, then a4 + b4 – a3 – b3 – 2a2b2 + ab is equal to
1
2
4
0
Correct Option: D
a4 + b4 – a3 – b3 – 2a2b2 + ab = a4 + b4 – 2a2b2 – a3 – b3 + ab = (a + b)2 (a – b)2 – (a + b) (a2 – ab + b2) + ab = (a – b)2 – a2 + ab – b2 + ab [∵ a + b = 1] = (a – b)2 – (a – b)2 = 0