Home » Aptitude » Algebra » Question
  1. If a + b + c = 15 and
    1
    +
    1
    +
    1
    =
    71
    ,then the value of a3 + b3 + c3 – 3abc is
    abcabc
    1. 160
    2. 180
    3. 200
    4. 220
Correct Option: B

a + b + c = 15,

1
+
1
+
1
=
71
abcabc

⇒ 
bc + ac + ab
=
71
abcabc

⇒  ab + bc + ca = 71
∴  a3 + b3 + c3 – 3abc = (a + b + c) (a2 + b2 + c2 – ab – bc – ac)
= (a + b + c) {(a + b + c)2 – 3 (ab + bc + ac)}
= 15 (152 – 3 × 71)
= 15 (225 – 213) = 15 × 12
= 180



Your comments will be displayed only after manual approval.