Algebra


  1. If   a +
    1
    = 1 and b +
    1
    = 1, then c +
    1
    is equal to
    bca









  1. View Hint View Answer Discuss in Forum

    a +
    1
    = 1 ⇒ 1 -
    1
    =
    b - 1
    bbb

    1
    =
    b
    and b +
    1
    = 1 ⇒
    1
    = 1 - b ⇒ c =
    1
    ab - 1cc1 - b

    ∴ c +
    1
    =
    1
    +
    b
    a1 - bb - 1

    =
    1
    -
    b
    =
    1 - b
    = 1
    1 - b1 - b1 - b

    Correct Option: C

    a +
    1
    = 1 ⇒ 1 -
    1
    =
    b - 1
    bbb

    1
    =
    b
    and b +
    1
    = 1 ⇒
    1
    = 1 - b ⇒ c =
    1
    ab - 1cc1 - b

    ∴ c +
    1
    =
    1
    +
    b
    a1 - bb - 1

    =
    1
    -
    b
    =
    1 - b
    = 1
    1 - b1 - b1 - b


  1. If the expression x2+ x + 1 is written in the form x +
    1
    2 + q2,
    2
    then the possible values of q are









  1. View Hint View Answer Discuss in Forum

    x2 + x + 1

    = x2 + 2.x.
    1
    +
    1
    +
    3
    244

    = x +
    1
    2 + ±
    3
    2
    22

    ∴ x +
    1
    2 + ±
    3
    2
    22

    = x +
    1
    2 + q2
    2

    ⇒  q = ±
    3
    2

    Correct Option: B

    x2 + x + 1

    = x2 + 2.x.
    1
    +
    1
    +
    3
    244

    = x +
    1
    2 + ±
    3
    2
    22

    ∴ x +
    1
    2 + ±
    3
    2
    22

    = x +
    1
    2 + q2
    2

    ⇒  q = ±
    3
    2



  1. If x and y are positive real numbers and xy = 8, then the minimum value of 2x + y is









  1. View Hint View Answer Discuss in Forum

    xy = 8 = 1 × 8 = 2 × 4

    =
    1
    × 16 =
    1
    × 24
    23

    ∴  Minimum value of 2x + y
    = 2 × 2 + 4 = 8

    Correct Option: D

    xy = 8 = 1 × 8 = 2 × 4

    =
    1
    × 16 =
    1
    × 24
    23

    ∴  Minimum value of 2x + y
    = 2 × 2 + 4 = 8


  1. If   x = 3 + √8, then   x2 +
    1
      is equal to
    x2









  1. View Hint View Answer Discuss in Forum

    x = 3 + √8

    ∴ 
    1
    =
    1
    =
    3 − √8
    x3 + √8(3 + √8)(3 − √8)

    =
    3 − √8
    = 3 − √8
    9 − 8

    Now,   x2 +
    1
    = x +
    1
    2 − 2
    x2x

    = (3 + √8 + 3 − √8)2 – 2
    = 36 – 2 = 34

    Correct Option: C

    x = 3 + √8

    ∴ 
    1
    =
    1
    =
    3 − √8
    x3 + √8(3 + √8)(3 − √8)

    =
    3 − √8
    = 3 − √8
    9 − 8

    Now,   x2 +
    1
    = x +
    1
    2 − 2
    x2x

    = (3 + √8 + 3 − √8)2 – 2
    = 36 – 2 = 34



  1. If  
    xy
    = a,
    xz
    = b and
    yz
    = c,
    x + yx + zy + z
    where a, b, c are all non-zero numbers, then x equals to









  1. View Hint View Answer Discuss in Forum

    xy
    = a ⇒
    x + y
    =
    1
    x + yxya

    ⇒ 
    1
    +
    1
    =
    1
          ...(i)
    yxa

    xz
    = b     ⇒ 
    x + z
    =
    1
    x + zxzb

    ⇒ 
    1
    +
    1
    =
    1
          ...(ii)
    zxb

    Similarly,
    1
    +
    1
    =
    1
    zyc

    ⇒ 
    1
    =
    1
    1
          ...(iii)
    ycz

    By substitution method
    From equations (i) and (iii),
    1
    1
    =
    1
    1
    axcz

    ⇒ 
    1
    1
    =
    1
    1
    +
    1
    axcbx

    [From equation (ii)]
    ⇒ 
    1
    +
    1
    =
    1
    1
    +
    1
    xxacb

    ⇒ 
    2
    =
    bc − ab + ac
    xabc

    ⇒  x =
    2abc
    bc + ac − ab

    Correct Option: C

    xy
    = a ⇒
    x + y
    =
    1
    x + yxya

    ⇒ 
    1
    +
    1
    =
    1
          ...(i)
    yxa

    xz
    = b     ⇒ 
    x + z
    =
    1
    x + zxzb

    ⇒ 
    1
    +
    1
    =
    1
          ...(ii)
    zxb

    Similarly,
    1
    +
    1
    =
    1
    zyc

    ⇒ 
    1
    =
    1
    1
          ...(iii)
    ycz

    By substitution method
    From equations (i) and (iii),
    1
    1
    =
    1
    1
    axcz

    ⇒ 
    1
    1
    =
    1
    1
    +
    1
    axcbx

    [From equation (ii)]
    ⇒ 
    1
    +
    1
    =
    1
    1
    +
    1
    xxacb

    ⇒ 
    2
    =
    bc − ab + ac
    xabc

    ⇒  x =
    2abc
    bc + ac − ab