Algebra
-
If a + 1 = 1 and b + 1 = 1, then c + 1 is equal to b c a
-
View Hint View Answer Discuss in Forum
a + 1 = 1 ⇒ 1 - 1 = b - 1 b b b ⇒ 1 = b and b + 1 = 1 ⇒ 1 = 1 - b ⇒ c = 1 a b - 1 c c 1 - b ∴ c + 1 = 1 + b a 1 - b b - 1 = 1 - b = 1 - b = 1 1 - b 1 - b 1 - b Correct Option: C
a + 1 = 1 ⇒ 1 - 1 = b - 1 b b b ⇒ 1 = b and b + 1 = 1 ⇒ 1 = 1 - b ⇒ c = 1 a b - 1 c c 1 - b ∴ c + 1 = 1 + b a 1 - b b - 1 = 1 - b = 1 - b = 1 1 - b 1 - b 1 - b
-
then the possible values of q areIf the expression x2+ x + 1 is written in the form x + 1 2 + q2, 2
-
View Hint View Answer Discuss in Forum
x2 + x + 1
= x2 + 2.x. 1 + 1 + 3 2 4 4 = x + 1 2 + ± √3 2 2 2 ∴ x + 1 2 + ± √3 2 2 2 = x + 1 2 + q2 2 ⇒ q = ± √3 2 Correct Option: B
x2 + x + 1
= x2 + 2.x. 1 + 1 + 3 2 4 4 = x + 1 2 + ± √3 2 2 2 ∴ x + 1 2 + ± √3 2 2 2 = x + 1 2 + q2 2 ⇒ q = ± √3 2
- If x and y are positive real numbers and xy = 8, then the minimum value of 2x + y is
-
View Hint View Answer Discuss in Forum
xy = 8 = 1 × 8 = 2 × 4
= 1 × 16 = 1 × 24 2 3
∴ Minimum value of 2x + y
= 2 × 2 + 4 = 8Correct Option: D
xy = 8 = 1 × 8 = 2 × 4
= 1 × 16 = 1 × 24 2 3
∴ Minimum value of 2x + y
= 2 × 2 + 4 = 8
-
If x = 3 + √8, then x2 + 1 is equal to x2
-
View Hint View Answer Discuss in Forum
x = 3 + √8
∴ 1 = 1 = 3 − √8 x 3 + √8 (3 + √8)(3 − √8) = 3 − √8 = 3 − √8 9 − 8 Now, x2 + 1 = x + 1 2 − 2 x2 x
= (3 + √8 + 3 − √8)2 – 2
= 36 – 2 = 34Correct Option: C
x = 3 + √8
∴ 1 = 1 = 3 − √8 x 3 + √8 (3 + √8)(3 − √8) = 3 − √8 = 3 − √8 9 − 8 Now, x2 + 1 = x + 1 2 − 2 x2 x
= (3 + √8 + 3 − √8)2 – 2
= 36 – 2 = 34
-
where a, b, c are all non-zero numbers, then x equals toIf xy = a, xz = b and yz = c, x + y x + z y + z
-
View Hint View Answer Discuss in Forum
xy = a ⇒ x + y = 1 x + y xy a ⇒ 1 + 1 = 1 ...(i) y x a xz = b ⇒ x + z = 1 x + z xz b ⇒ 1 + 1 = 1 ...(ii) z x b
Similarly,1 + 1 = 1 z y c ⇒ 1 = 1 − 1 ...(iii) y c z
By substitution method
From equations (i) and (iii),1 − 1 = 1 − 1 a x c z ⇒ 1 − 1 = 1 − 1 + 1 a x c b x
[From equation (ii)]⇒ 1 + 1 = 1 − 1 + 1 x x a c b ⇒ 2 = bc − ab + ac x abc ⇒ x = 2abc bc + ac − ab Correct Option: C
xy = a ⇒ x + y = 1 x + y xy a ⇒ 1 + 1 = 1 ...(i) y x a xz = b ⇒ x + z = 1 x + z xz b ⇒ 1 + 1 = 1 ...(ii) z x b
Similarly,1 + 1 = 1 z y c ⇒ 1 = 1 − 1 ...(iii) y c z
By substitution method
From equations (i) and (iii),1 − 1 = 1 − 1 a x c z ⇒ 1 − 1 = 1 − 1 + 1 a x c b x
[From equation (ii)]⇒ 1 + 1 = 1 − 1 + 1 x x a c b ⇒ 2 = bc − ab + ac x abc ⇒ x = 2abc bc + ac − ab