Algebra


  1. If  
    x
    +
    3
    = 1 then the value of x3 is
    3x









  1. View Hint View Answer Discuss in Forum

    x
    +
    3
    = 1
    3x

    ⇒ 
    x2 + 9
    = 1
    3x

    ⇒  x2 + 9 = 3x
    ⇒  x2 – 3x + 9 = 0
    ∴  x3 + 33 = (x + 3) (x2 – 3x + 9) = 0
    ⇒  x3 = – 27

    Correct Option: D

    x
    +
    3
    = 1
    3x

    ⇒ 
    x2 + 9
    = 1
    3x

    ⇒  x2 + 9 = 3x
    ⇒  x2 – 3x + 9 = 0
    ∴  x3 + 33 = (x + 3) (x2 – 3x + 9) = 0
    ⇒  x3 = – 27


  1. 9x2 + 25 – 30x can be expressed as the square of









  1. View Hint View Answer Discuss in Forum

    9x2 + 25 – 30x
    = (3x)2 + (5)2 – 2 × 3x × 5
    = (3x – 5)2

    Correct Option: C

    9x2 + 25 – 30x
    = (3x)2 + (5)2 – 2 × 3x × 5
    = (3x – 5)2



  1. For real a, b, c if a2 + b2 + c2 = ab + bc + ca, the value of
    a + c
    is
    b









  1. View Hint View Answer Discuss in Forum

    a2 + b2 + c2 = ab + bc + ca
    ⇒  2a2 + 2b2 + 2c2 – 2ab – 2bc – 2ca = 0
    ⇒  a2 + b2 – 2ab + b2 + c2 – 2bc + c2 + a2 – 2ca = 0
    ⇒  (a – b)2 + (b – c)2 + (c – a)2 = 0
    ∴  a – b = 0 ⇒ a = b
    b – c = 0 ⇒ b = c
    c – a = 0 ⇒ c = a
    ∴  a = b = c

    ∴ 
    a + c
    =
    2a
    = 2
    ba

    Correct Option: C

    a2 + b2 + c2 = ab + bc + ca
    ⇒  2a2 + 2b2 + 2c2 – 2ab – 2bc – 2ca = 0
    ⇒  a2 + b2 – 2ab + b2 + c2 – 2bc + c2 + a2 – 2ca = 0
    ⇒  (a – b)2 + (b – c)2 + (c – a)2 = 0
    ∴  a – b = 0 ⇒ a = b
    b – c = 0 ⇒ b = c
    c – a = 0 ⇒ c = a
    ∴  a = b = c

    ∴ 
    a + c
    =
    2a
    = 2
    ba


  1. If   a +
    1
    = b +
    1
    = c +
    1
    , where a ≠ b ≠ c ≠ 0, then the value of a2b2c2
    bca









  1. View Hint View Answer Discuss in Forum

    a +
    1
    = b +
    1
    = c +
    1
    bca

    ⇒ 
    abc + c
    =
    abc + a
    =
    abc + b
    bcacab

    ⇒ 
    c
    =
    a
    =
    b
    bcacab

    ⇒ 
    1
    =
    1
    =
    1
    bca

    ⇒  a = b = c = 1
    ∴  a2b2c2 = 1

    Correct Option: D

    a +
    1
    = b +
    1
    = c +
    1
    bca

    ⇒ 
    abc + c
    =
    abc + a
    =
    abc + b
    bcacab

    ⇒ 
    c
    =
    a
    =
    b
    bcacab

    ⇒ 
    1
    =
    1
    =
    1
    bca

    ⇒  a = b = c = 1
    ∴  a2b2c2 = 1



  1. Let   x =
    13 + √11
    and y =
    1
    then the value of 3x2 – 5xy + 3y2 is
    13 − √11x









  1. View Hint View Answer Discuss in Forum

    x =
    13 + √11
    13 − √11

    On rationalising the denominator,
    =
    13 + √11
    ×
    13 + √11
    13 − √1113 + √11

    =
    (√13 + √11)2
    (√13)2 − (√11)2

    =
    13 + 11 + 2√143
    13 − 11

    =
    24 + 2√143
    = 12 + √143
    2

    ∴  y =
    1
    =
    1
    x12 + √143

    =
    1
    ×
    12 − √143
    12 + √14312 − √143

    =
    12 − √143
    = 12 − √143
    144 − 143

    ∴  x – y = 12 + √143 – 12 + √143 = 2√143
    and
    xy = (12 + √143)(12 – √143)
    = 144 – 143 = 1
    ∴  3x2 – 5xy + 3y2 = 3x2 – 6xy + 3y2 + xy
    = 3 (x – y)2 + xy
    = 3 (2√143)2 + 1
    = 3 × 4 × 143 + 1 = 1716 + 1
    = 1717

    Correct Option: A

    x =
    13 + √11
    13 − √11

    On rationalising the denominator,
    =
    13 + √11
    ×
    13 + √11
    13 − √1113 + √11

    =
    (√13 + √11)2
    (√13)2 − (√11)2

    =
    13 + 11 + 2√143
    13 − 11

    =
    24 + 2√143
    = 12 + √143
    2

    ∴  y =
    1
    =
    1
    x12 + √143

    =
    1
    ×
    12 − √143
    12 + √14312 − √143

    =
    12 − √143
    = 12 − √143
    144 − 143

    ∴  x – y = 12 + √143 – 12 + √143 = 2√143
    and
    xy = (12 + √143)(12 – √143)
    = 144 – 143 = 1
    ∴  3x2 – 5xy + 3y2 = 3x2 – 6xy + 3y2 + xy
    = 3 (x – y)2 + xy
    = 3 (2√143)2 + 1
    = 3 × 4 × 143 + 1 = 1716 + 1
    = 1717