Algebra
-
x2 + 3x + 1 = 1 , then the value of x + 1 is : x2 − 3x + 1 2 x
-
View Hint View Answer Discuss in Forum
x2 + 3x + 1 = 1 x2 − 3x + 1 2
⇒ 2x2 + 6x + 2 = x2 – 3x + 1
⇒ 2x2 – x2 + 2 – 1 = – 6x – 3x
⇒ x2 + 1 = – 9x⇒ x2 + 1 = –9 x ⇒ x + 1 = –9 x Correct Option: B
x2 + 3x + 1 = 1 x2 − 3x + 1 2
⇒ 2x2 + 6x + 2 = x2 – 3x + 1
⇒ 2x2 – x2 + 2 – 1 = – 6x – 3x
⇒ x2 + 1 = – 9x⇒ x2 + 1 = –9 x ⇒ x + 1 = –9 x
- If (a + b)2 = 100 and (a – b) = 4, then ab equals to :
-
View Hint View Answer Discuss in Forum
4ab = (a + b)2 – (a – b)2
⇒ 4ab = 100 – (4)2 = 100 – 16
⇒ 4ab = 84⇒ ab = 84 = 21 4 Correct Option: C
4ab = (a + b)2 – (a – b)2
⇒ 4ab = 100 – (4)2 = 100 – 16
⇒ 4ab = 84⇒ ab = 84 = 21 4
-
If 3a2 = b2 ≠ 0, then the value of (a + b)3 - (a - b)3 is (a + b)2 - (a - b)2
-
View Hint View Answer Discuss in Forum
Expression = (a + b)3 - (a - b)3 (a + b)2 + (a - b)2 Expression = (a3 + b3 + 3a2b + 3ab2) - (a3 - b3 - 3a2b + 3ab2) (a2 + b2 + 2ab) + (a2 + b2 - 2ab) Expression = (a3 + b3 + 3a2b + 3ab2 - a3 + b3 + 3a2b - 3ab2) (a2 + b2 + a2 + b2) Expression = (6a2b + 2b3) 2(a2 + b2) Expression = 2b(3a2 + b2) 2(a2 + b2) Expression = b(b2 + b2) b2 + b2 3 Expression = b × 2b2 4b2 3 Expression = b(3 × 2) = 3b 4 2 Correct Option: A
Expression = (a + b)3 - (a - b)3 (a + b)2 + (a - b)2 Expression = (a3 + b3 + 3a2b + 3ab2) - (a3 - b3 - 3a2b + 3ab2) (a2 + b2 + 2ab) + (a2 + b2 - 2ab) Expression = (a3 + b3 + 3a2b + 3ab2 - a3 + b3 + 3a2b - 3ab2) (a2 + b2 + a2 + b2) Expression = (6a2b + 2b3) 2(a2 + b2) Expression = 2b(3a2 + b2) 2(a2 + b2) Expression = b(b2 + b2) b2 + b2 3 Expression = b × 2b2 4b2 3 Expression = b(3 × 2) = 3b 4 2
- 138. If a2 + b2 + c2 – ab – bc – ca = 0, then
-
View Hint View Answer Discuss in Forum
a2 + b2 + c2 – ab – bc – ca = 0
⇒ 2a2 + 2b2 + 2c2 – 2ab – 2bc – 2ca = 0
⇒ a2 + b2 - 2ab + b2 + c2 – 2bc + c2 + a2 – 2ca = 0
⇒ (a - b)2 + (b - c)2 + (c - a)2 = 0
It is possible only when,
a – b = 0 ⇒ a = b
b – c = 0 ⇒ b = c
c – a = 0 ⇒ c = a
∴ a = b = cCorrect Option: A
a2 + b2 + c2 – ab – bc – ca = 0
⇒ 2a2 + 2b2 + 2c2 – 2ab – 2bc – 2ca = 0
⇒ a2 + b2 - 2ab + b2 + c2 – 2bc + c2 + a2 – 2ca = 0
⇒ (a - b)2 + (b - c)2 + (c - a)2 = 0
It is possible only when,
a – b = 0 ⇒ a = b
b – c = 0 ⇒ b = c
c – a = 0 ⇒ c = a
∴ a = b = c
-
If x + 1 = 0 , then the value of x5 + 1 is x x5
-
View Hint View Answer Discuss in Forum
Using Rule 1 and 8,
x + 1 = 0 x
On squaring both sides,⇒ x + 1 2 = 0 x ⇒ x2 + 1 + 2 = 0 x2 ⇒ x2 + 1 = – 2 ..... (i)(not admissible) x2 On cubing , x + 1 = 0 x ⇒ x3 + 1 + 3 × 0 = 0 x3 ⇒ x3 + 1 = 0 x3 ∴ x2 + 1 x3 + 1 = 2 × 2 = 4 x2 x3 ⇒ x5 + 1 + x + 1 = 0 x5 x ⇒ x5 + 1 = 0 x5
Correct Option: D
Using Rule 1 and 8,
x + 1 = 0 x
On squaring both sides,⇒ x + 1 2 = 0 x ⇒ x2 + 1 + 2 = 0 x2 ⇒ x2 + 1 = – 2 ..... (i)(not admissible) x2 On cubing , x + 1 = 0 x ⇒ x3 + 1 + 3 × 0 = 0 x3 ⇒ x3 + 1 = 0 x3 ∴ x2 + 1 x3 + 1 = 2 × 2 = 4 x2 x3 ⇒ x5 + 1 + x + 1 = 0 x5 x ⇒ x5 + 1 = 0 x5