Algebra


  1. x2 + 3x + 1
    =
    1
    , then the value of x +
    1
    is :
    x2 − 3x + 12x









  1. View Hint View Answer Discuss in Forum

    x2 + 3x + 1
    =
    1
    x2 − 3x + 12

    ⇒  2x2 + 6x + 2 = x2 – 3x + 1
    ⇒  2x2 – x2 + 2 – 1 = – 6x – 3x
    ⇒  x2 + 1 = – 9x
    ⇒ 
    x2 + 1
    = –9
    x

    ⇒  x +
    1
    = –9
    x

    Correct Option: B

    x2 + 3x + 1
    =
    1
    x2 − 3x + 12

    ⇒  2x2 + 6x + 2 = x2 – 3x + 1
    ⇒  2x2 – x2 + 2 – 1 = – 6x – 3x
    ⇒  x2 + 1 = – 9x
    ⇒ 
    x2 + 1
    = –9
    x

    ⇒  x +
    1
    = –9
    x


  1. If (a + b)2 = 100 and (a – b) = 4, then ab equals to :









  1. View Hint View Answer Discuss in Forum

    4ab = (a + b)2 – (a – b)2
    ⇒  4ab = 100 – (4)2 = 100 – 16
    ⇒  4ab = 84

    ⇒  ab =
    84
    = 21
    4

    Correct Option: C

    4ab = (a + b)2 – (a – b)2
    ⇒  4ab = 100 – (4)2 = 100 – 16
    ⇒  4ab = 84

    ⇒  ab =
    84
    = 21
    4



  1. If 3a2 = b2 ≠ 0, then the value of
    (a + b)3 - (a - b)3
    is
    (a + b)2 - (a - b)2










  1. View Hint View Answer Discuss in Forum

    Expression =
    (a + b)3 - (a - b)3
    (a + b)2 + (a - b)2

    Expression =
    (a3 + b3 + 3a2b + 3ab2) - (a3 - b3 - 3a2b + 3ab2)
    (a2 + b2 + 2ab) + (a2 + b2 - 2ab)

    Expression =
    (a3 + b3 + 3a2b + 3ab2 - a3 + b3 + 3a2b - 3ab2)
    (a2 + b2 + a2 + b2)

    Expression =
    (6a2b + 2b3)
    2(a2 + b2)

    Expression =
    2b(3a2 + b2)
    2(a2 + b2)

    Expression =
    b(b2 + b2)
    b2
    + b2
    3

    Expression =
    b × 2b2
    4b2
    3

    Expression =
    b(3 × 2)
    =
    3b
    42

    Correct Option: A

    Expression =
    (a + b)3 - (a - b)3
    (a + b)2 + (a - b)2

    Expression =
    (a3 + b3 + 3a2b + 3ab2) - (a3 - b3 - 3a2b + 3ab2)
    (a2 + b2 + 2ab) + (a2 + b2 - 2ab)

    Expression =
    (a3 + b3 + 3a2b + 3ab2 - a3 + b3 + 3a2b - 3ab2)
    (a2 + b2 + a2 + b2)

    Expression =
    (6a2b + 2b3)
    2(a2 + b2)

    Expression =
    2b(3a2 + b2)
    2(a2 + b2)

    Expression =
    b(b2 + b2)
    b2
    + b2
    3

    Expression =
    b × 2b2
    4b2
    3

    Expression =
    b(3 × 2)
    =
    3b
    42


  1. 138. If a2 + b2 + c2 – ab – bc – ca = 0, then









  1. View Hint View Answer Discuss in Forum

    a2 + b2 + c2 – ab – bc – ca = 0
    ⇒ 2a2 + 2b2 + 2c2 – 2ab – 2bc – 2ca = 0
    ⇒ a2 + b2 - 2ab + b2 + c2 – 2bc + c2 + a2 – 2ca = 0
    ⇒ (a - b)2 + (b - c)2 + (c - a)2 = 0
    It is possible only when,
    a – b = 0 ⇒ a = b
    b – c = 0 ⇒ b = c
    c – a = 0 ⇒ c = a
    ∴ a = b = c

    Correct Option: A

    a2 + b2 + c2 – ab – bc – ca = 0
    ⇒ 2a2 + 2b2 + 2c2 – 2ab – 2bc – 2ca = 0
    ⇒ a2 + b2 - 2ab + b2 + c2 – 2bc + c2 + a2 – 2ca = 0
    ⇒ (a - b)2 + (b - c)2 + (c - a)2 = 0
    It is possible only when,
    a – b = 0 ⇒ a = b
    b – c = 0 ⇒ b = c
    c – a = 0 ⇒ c = a
    ∴ a = b = c



  1. If x +
    1
    = 0 , then the value of x5 +
    1
    is
    xx5










  1. View Hint View Answer Discuss in Forum

    Using Rule 1 and 8,

    x +
    1
    = 0
    x

    On squaring both sides,
    x +
    1
    2 = 0
    x

    ⇒ x2 +
    1
    + 2 = 0
    x2

    ⇒ x2 +
    1
    = – 2 ..... (i)(not admissible)
    x2

    On cubing , x +
    1
    = 0
    x

    ⇒ x3 +
    1
    + 3 × 0 = 0
    x3

    ⇒ x3 +
    1
    = 0
    x3

    x2 +
    1
    x3 +
    1
    = 2 × 2 = 4
    x2x3

    ⇒ x5 +
    1
    + x +
    1
    = 0
    x5x

    ⇒ x5 +
    1
    = 0
    x5

    Correct Option: D

    Using Rule 1 and 8,

    x +
    1
    = 0
    x

    On squaring both sides,
    x +
    1
    2 = 0
    x

    ⇒ x2 +
    1
    + 2 = 0
    x2

    ⇒ x2 +
    1
    = – 2 ..... (i)(not admissible)
    x2

    On cubing , x +
    1
    = 0
    x

    ⇒ x3 +
    1
    + 3 × 0 = 0
    x3

    ⇒ x3 +
    1
    = 0
    x3

    x2 +
    1
    x3 +
    1
    = 2 × 2 = 4
    x2x3

    ⇒ x5 +
    1
    + x +
    1
    = 0
    x5x

    ⇒ x5 +
    1
    = 0
    x5