Algebra


  1. If x (x + y + z) = 20, y (x + y + z) = 30, and z (x + y + z) = 50, then the value of 2 (x + y + z) is :









  1. View Hint View Answer Discuss in Forum

    x (x + y + z) = 20
    ⇒  x2 + xy + xz = 20         --- (i)
    Again, y (x + y + z) = 30
    ⇒  xy + y2 + yz = 30         --- (ii)
    and, z (x + y + z) = 50
    ⇒  xz + yz + z2 = 50         --- (iii)
    On adding all three equations,
    x2 + y2 + z2 + 2xy + 2yz + 2zx = 20 + 30 + 50
    ⇒  (x + y + z)2 = 100
    ⇒  x + y + z = 10
    ⇒  2 (x + y + z) = 20

    Correct Option: B

    x (x + y + z) = 20
    ⇒  x2 + xy + xz = 20         --- (i)
    Again, y (x + y + z) = 30
    ⇒  xy + y2 + yz = 30         --- (ii)
    and, z (x + y + z) = 50
    ⇒  xz + yz + z2 = 50         --- (iii)
    On adding all three equations,
    x2 + y2 + z2 + 2xy + 2yz + 2zx = 20 + 30 + 50
    ⇒  (x + y + z)2 = 100
    ⇒  x + y + z = 10
    ⇒  2 (x + y + z) = 20


  1. If  
    x
    =
    a + 2
    , then the value of
    x2 − y2
    is :
    ya − 2x2 + y2









  1. View Hint View Answer Discuss in Forum

    x
    =
    a + 2
    ya − 2

    On squaring both sides,
    x2
    =
    (a + 2)2
    y2(a − 2)2

    By componendo and dividendo,
    x2 − y2
    =
    (a + 2)2 − (a − 2)2
    x2 + y2(a + 2)2 + (a − 2)2

    ⇒ 
    x2 − y2
    =
    4 × a × 2
    x2 + y24(a2 + 4)

    =
    4a
    a2 + 4

    [∵  (a + b)2 + (a – b)2 = 2(a2 + b2);
    (a + b)2 – (a – b)2 = 4ab]

    Correct Option: C

    x
    =
    a + 2
    ya − 2

    On squaring both sides,
    x2
    =
    (a + 2)2
    y2(a − 2)2

    By componendo and dividendo,
    x2 − y2
    =
    (a + 2)2 − (a − 2)2
    x2 + y2(a + 2)2 + (a − 2)2

    ⇒ 
    x2 − y2
    =
    4 × a × 2
    x2 + y24(a2 + 4)

    =
    4a
    a2 + 4

    [∵  (a + b)2 + (a – b)2 = 2(a2 + b2);
    (a + b)2 – (a – b)2 = 4ab]



  1. If   √y = 4x, then
    x2
    is :
    y









  1. View Hint View Answer Discuss in Forum

    y = 4x ⇒ y = (4x)2 = 16x2

    ∴ 
    x2
    =
    x2
    =
    1
    y16x216

    Correct Option: D

    y = 4x ⇒ y = (4x)2 = 16x2

    ∴ 
    x2
    =
    x2
    =
    1
    y16x216


  1. If  
    a
    +
    b
    = 2, then the value of (a – b) is :
    ba









  1. View Hint View Answer Discuss in Forum

    a
    +
    b
    = 2
    ba

    ⇒ 
    a2 + b2
    = 2
    ab

    ⇒  a2 + b2 = 2ab
    ⇒  a2 + b2 – 2ab = 0
    ⇒  (a – b)2 = 0 ⇒ a – b = 0

    Correct Option: D

    a
    +
    b
    = 2
    ba

    ⇒ 
    a2 + b2
    = 2
    ab

    ⇒  a2 + b2 = 2ab
    ⇒  a2 + b2 – 2ab = 0
    ⇒  (a – b)2 = 0 ⇒ a – b = 0



  1. If  
    x + 1
    =
    a
    and
    1 − y
    =
    b
    , then the value of
    x − y
      is equal to
    x − 1b1 + ya1 + xy









  1. View Hint View Answer Discuss in Forum

    x + 1
    =
    a
    x − 1b

    By componendo and dividendo,
    x + 1 + x − 1
    =
    a + b
    x + 1 − x + 1a − b

    ⇒ 
    2x
    =
    a + b
    2a − b

    ⇒  x =
    a + b
    a − b

    Again,
    1 − y
    =
    b
    1 + ya

    ⇒ 
    1 + y
    =
    a
    1 − yb

    ⇒ 
    1 + y + 1 − y
    =
    a + b
    1 + y − 1 + ya − b

    ⇒ 
    2
    =
    a + b
    2ya − b

    ⇒  y =
    a − b
    a + b

    ∴  x − y =
    a + b
    a − b
    a − ba + b

    =
    (a + b) 2 − (a − b)2
    =
    4ab
    (a + b)(a − b)a2 − b2

    xy =
    a + b
    ×
    a − b
    = 1
    a − ba + b

    ∴  Expression
    =
    x − y
    =
    4ab
    1 + xy
    a2 − b2
    1 + 1

    =
    4ab
    =
    2ab
    2(a2 − b2)a2 − b2

    Correct Option: A

    x + 1
    =
    a
    x − 1b

    By componendo and dividendo,
    x + 1 + x − 1
    =
    a + b
    x + 1 − x + 1a − b

    ⇒ 
    2x
    =
    a + b
    2a − b

    ⇒  x =
    a + b
    a − b

    Again,
    1 − y
    =
    b
    1 + ya

    ⇒ 
    1 + y
    =
    a
    1 − yb

    ⇒ 
    1 + y + 1 − y
    =
    a + b
    1 + y − 1 + ya − b

    ⇒ 
    2
    =
    a + b
    2ya − b

    ⇒  y =
    a − b
    a + b

    ∴  x − y =
    a + b
    a − b
    a − ba + b

    =
    (a + b) 2 − (a − b)2
    =
    4ab
    (a + b)(a − b)a2 − b2

    xy =
    a + b
    ×
    a − b
    = 1
    a − ba + b

    ∴  Expression
    =
    x − y
    =
    4ab
    1 + xy
    a2 − b2
    1 + 1

    =
    4ab
    =
    2ab
    2(a2 − b2)a2 − b2