Algebra


  1. If x = 2 then the value of x3 + 27x2 + 243x + 631 is









  1. View Hint View Answer Discuss in Forum

    Using Rule 8,
    x3 + 27x2 + 243x + 631 = x3 + 3 . x2 × 9 + 3x.92 + 93 - 93 + 631
    x3 + 27x2 + 243x + 631 = (x + 9)3 - 729 + 631
    x3 + 27x2 + 243x + 631 = (2 + 9)3 – 98 { x = 2( Given ) }
    x3 + 27x2 + 243x + 631 = 113 – 98 = 1331 – 98 = 1233

    Correct Option: A

    Using Rule 8,
    x3 + 27x2 + 243x + 631 = x3 + 3 . x2 × 9 + 3x.92 + 93 - 93 + 631
    x3 + 27x2 + 243x + 631 = (x + 9)3 - 729 + 631
    x3 + 27x2 + 243x + 631 = (2 + 9)3 – 98 { x = 2( Given ) }
    x3 + 27x2 + 243x + 631 = 113 – 98 = 1331 – 98 = 1233


  1. Given that x3 + y3 = 72 and xy = 6 with x > y. Then the value of (x – y) is









  1. View Hint View Answer Discuss in Forum

    x3 + y3 = 72
    x3 + y3 = 64 + 8 = 43 + 23
    ∴ x = 4, y = 2 ⇒ xy = 8
    ∴ x – y = 4 – 2 = 2

    Correct Option: C

    x3 + y3 = 72
    x3 + y3 = 64 + 8 = 43 + 23
    ∴ x = 4, y = 2 ⇒ xy = 8
    ∴ x – y = 4 – 2 = 2



  1. If x +
    1
    = 2 , then the value of x12 -
    1
    is
    xx12










  1. View Hint View Answer Discuss in Forum

    x +
    1
    = 2
    x

    x2 + 1
    = 2
    x

    ⇒ x2 + 1 = 2x
    ⇒ x2 - 2x + 1 = 0
    ⇒ (x - 1)2 = 0 ⇒ x = 1
    ∴ x12 +
    1
    = 1 + 1 = 2
    x12

    Second Method :
    Using Rule 16,
    Here, x +
    1
    = 2
    x

    ∴ x12 +
    1
    = 2
    x12

    Correct Option: A

    x +
    1
    = 2
    x

    x2 + 1
    = 2
    x

    ⇒ x2 + 1 = 2x
    ⇒ x2 - 2x + 1 = 0
    ⇒ (x - 1)2 = 0 ⇒ x = 1
    ∴ x12 +
    1
    = 1 + 1 = 2
    x12

    Second Method :
    Using Rule 16,
    Here, x +
    1
    = 2
    x

    ∴ x12 +
    1
    = 2
    x12


  1. If m = – 4, n = – 2, then the value of m3 - 3m2 + 3m + 3n + 3n2 + n3 is









  1. View Hint View Answer Discuss in Forum

    Using Rule 8 and 9,
    Expression = m3 - 3m2 + 3m + 3n + 3n2 + n3
    Expression = m3 - 3m2 + 3m - 1 + n3 + 3n2 + 3n + 1
    Expression = (m - 1)3 + (n + 1)3
    Expression = (-4 - 1)3 + (-2 + 1)3
    Expression = (-5)3 + (-1)3 = – 125 – 1 = – 126

    Correct Option: A

    Using Rule 8 and 9,
    Expression = m3 - 3m2 + 3m + 3n + 3n2 + n3
    Expression = m3 - 3m2 + 3m - 1 + n3 + 3n2 + 3n + 1
    Expression = (m - 1)3 + (n + 1)3
    Expression = (-4 - 1)3 + (-2 + 1)3
    Expression = (-5)3 + (-1)3 = – 125 – 1 = – 126



  1. If (m + 1) = √n + 3, the value of
    1
    m3 - 6m2 + 12m - 8
    - n is
    2n










  1. View Hint View Answer Discuss in Forum

    m + 1 = √n + 3 (Given)
    ⇒ m + 1 - 3 = √n
    ⇒ m - 2 = √n
    On cubing both sides,
    (m - 2)3 = (√n)3
    ⇒ m3 - 3m2 × 2 + 3 m(2)2 - 23 = n√n
    [ ∴ (a - b)3 = a3 - 3a2b + 3ab2 - b3 ]
    ⇒ m3 - 6m2 + 12m - 8 = n√n

    m3 - 6m2 + 12m - 8
    = n
    n

    m3 - 6m2 + 12m - 8
    - n = 0
    n

    1
    m3 - 6m2 + 12m - 8
    - n = 0
    2n

    Correct Option: A

    m + 1 = √n + 3 (Given)
    ⇒ m + 1 - 3 = √n
    ⇒ m - 2 = √n
    On cubing both sides,
    (m - 2)3 = (√n)3
    ⇒ m3 - 3m2 × 2 + 3 m(2)2 - 23 = n√n
    [ ∴ (a - b)3 = a3 - 3a2b + 3ab2 - b3 ]
    ⇒ m3 - 6m2 + 12m - 8 = n√n

    m3 - 6m2 + 12m - 8
    = n
    n

    m3 - 6m2 + 12m - 8
    - n = 0
    n

    1
    m3 - 6m2 + 12m - 8
    - n = 0
    2n