Algebra


  1. If   a + b + c = 0, then the value of
    1
    +
    1
    +
    1
      is
    (a + b)(b + c)(a + c)(b + a)(c + a)(c + b)









  1. View Hint View Answer Discuss in Forum

    1
    +
    1
    +
    1
    (a + b)(b + c)(a + c)(b + a)(c + a)(c + b)

    =
    c + a + b + c + a + b
    (a + b)(b + c)(c + a)

    =
    2(a + b + c )
    (a + b)(b + c)(c + a)

    = 0 [because;  a + b + c = 0]

    Correct Option: B

    1
    +
    1
    +
    1
    (a + b)(b + c)(a + c)(b + a)(c + a)(c + b)

    =
    c + a + b + c + a + b
    (a + b)(b + c)(c + a)

    =
    2(a + b + c )
    (a + b)(b + c)(c + a)

    = 0 [because;  a + b + c = 0]


  1. If x + y + z = 0, then
    x2
    +
    y2
    +
    z2
      = ?
    yzzxxy









  1. View Hint View Answer Discuss in Forum

    x2
    +
    y2
    +
    z2
    yzzxxy

    =
    x3 + y3 + z3
    =
    3xyz
    = 3
    xyzxyz

    Correct Option: D

    x2
    +
    y2
    +
    z2
    yzzxxy

    =
    x3 + y3 + z3
    =
    3xyz
    = 3
    xyzxyz



  1. If   x – y =
    x + y
    =
    xy
    , the numerical value of xy is
    74









  1. View Hint View Answer Discuss in Forum

    x – y =
    x + y
    =
    xy
    = k
    74

    ⇒  x – y = k
    x + y = 7k
    ∴  (x + y)2 – (x – y)2 = 49k2 – k2
    ⇒  4xy = 48k2
    ⇒  16k = 48k2
    ⇒  k =
    1
    3

    ∴  xy = 4k = 4 ×
    1
    =
    4
    33

    Correct Option: A

    x – y =
    x + y
    =
    xy
    = k
    74

    ⇒  x – y = k
    x + y = 7k
    ∴  (x + y)2 – (x – y)2 = 49k2 – k2
    ⇒  4xy = 48k2
    ⇒  16k = 48k2
    ⇒  k =
    1
    3

    ∴  xy = 4k = 4 ×
    1
    =
    4
    33


  1. If   a2 + b2 + 2b + 4a + 5 = 0, then the value of
    a − b
      is
    a + b









  1. View Hint View Answer Discuss in Forum

    a2 + b2 + 2b + 4a + 5 = 0
    ⇒  a2 + 4a + b2 + 2b + 5 = 0
    ⇒  a2 + 4a + 4 + b2 + 2b + 1 = 0
    ⇒  (a + 2)2 + (b + 1)2 = 0
    It is possible only when
    a + 2 = 0 ⇒ a = –2
    and, b + 1 = 0 ⇒ b = – 1

    ∴ 
    a − b
    =
    −2 + 1
    a + b−2 − 1

    =
    − 1
    =
    1
    −33

    Correct Option: C

    a2 + b2 + 2b + 4a + 5 = 0
    ⇒  a2 + 4a + b2 + 2b + 5 = 0
    ⇒  a2 + 4a + 4 + b2 + 2b + 1 = 0
    ⇒  (a + 2)2 + (b + 1)2 = 0
    It is possible only when
    a + 2 = 0 ⇒ a = –2
    and, b + 1 = 0 ⇒ b = – 1

    ∴ 
    a − b
    =
    −2 + 1
    a + b−2 − 1

    =
    − 1
    =
    1
    −33



  1. If   m +
    1
    = 4, find the value of (m − 2)2 +
    1
    .
    m − 2(m − 2)2









  1. View Hint View Answer Discuss in Forum

    m +
    1
    = 4
    m − 2

    ⇒  m +
    1
    – 2 = 4 – 2
    m − 2

    ⇒  (m − 2) +
    1
    = 4 – 2 = 2
    (m − 2)

    On squaring both sides,
    (m − 2)2 +
    1
    + 2(m − 2)
    1
    = 4
    (m − 2)2m − 2

    ⇒  (m − 2)2 +
    1
    = 4 − 2 = 2
    (m − 2)2

    Second Method :
    m +
    1
    = 4
    m − 2

    m − 2 +
    1
    = 4 − 2
    m − 2

    m − 2 +
    1
    = 2
    m − 2

    (m − 2)2 +
    1
    = 2
    (m − 2)2

    Correct Option: C

    m +
    1
    = 4
    m − 2

    ⇒  m +
    1
    – 2 = 4 – 2
    m − 2

    ⇒  (m − 2) +
    1
    = 4 – 2 = 2
    (m − 2)

    On squaring both sides,
    (m − 2)2 +
    1
    + 2(m − 2)
    1
    = 4
    (m − 2)2m − 2

    ⇒  (m − 2)2 +
    1
    = 4 − 2 = 2
    (m − 2)2

    Second Method :
    m +
    1
    = 4
    m − 2

    m − 2 +
    1
    = 4 − 2
    m − 2

    m − 2 +
    1
    = 2
    m − 2

    (m − 2)2 +
    1
    = 2
    (m − 2)2