Algebra
-
If a + b + c = 0, then the value of 1 + 1 + 1 is (a + b)(b + c) (a + c)(b + a) (c + a)(c + b)
-
View Hint View Answer Discuss in Forum
1 + 1 + 1 (a + b)(b + c) (a + c)(b + a) (c + a)(c + b) = c + a + b + c + a + b (a + b)(b + c)(c + a) = 2(a + b + c ) (a + b)(b + c)(c + a)
= 0 [because; a + b + c = 0]Correct Option: B
1 + 1 + 1 (a + b)(b + c) (a + c)(b + a) (c + a)(c + b) = c + a + b + c + a + b (a + b)(b + c)(c + a) = 2(a + b + c ) (a + b)(b + c)(c + a)
= 0 [because; a + b + c = 0]
-
If x + y + z = 0, then x2 + y2 + z2 = ? yz zx xy
-
View Hint View Answer Discuss in Forum
x2 + y2 + z2 yz zx xy = x3 + y3 + z3 = 3xyz = 3 xyz xyz Correct Option: D
x2 + y2 + z2 yz zx xy = x3 + y3 + z3 = 3xyz = 3 xyz xyz
-
If x – y = x + y = xy , the numerical value of xy is 7 4
-
View Hint View Answer Discuss in Forum
x – y = x + y = xy = k 7 4
⇒ x – y = k
x + y = 7k
∴ (x + y)2 – (x – y)2 = 49k2 – k2
⇒ 4xy = 48k2
⇒ 16k = 48k2⇒ k = 1 3 ∴ xy = 4k = 4 × 1 = 4 3 3 Correct Option: A
x – y = x + y = xy = k 7 4
⇒ x – y = k
x + y = 7k
∴ (x + y)2 – (x – y)2 = 49k2 – k2
⇒ 4xy = 48k2
⇒ 16k = 48k2⇒ k = 1 3 ∴ xy = 4k = 4 × 1 = 4 3 3
-
If a2 + b2 + 2b + 4a + 5 = 0, then the value of a − b is a + b
-
View Hint View Answer Discuss in Forum
a2 + b2 + 2b + 4a + 5 = 0
⇒ a2 + 4a + b2 + 2b + 5 = 0
⇒ a2 + 4a + 4 + b2 + 2b + 1 = 0
⇒ (a + 2)2 + (b + 1)2 = 0
It is possible only when
a + 2 = 0 ⇒ a = –2
and, b + 1 = 0 ⇒ b = – 1∴ a − b = −2 + 1 a + b −2 − 1 = − 1 = 1 −3 3 Correct Option: C
a2 + b2 + 2b + 4a + 5 = 0
⇒ a2 + 4a + b2 + 2b + 5 = 0
⇒ a2 + 4a + 4 + b2 + 2b + 1 = 0
⇒ (a + 2)2 + (b + 1)2 = 0
It is possible only when
a + 2 = 0 ⇒ a = –2
and, b + 1 = 0 ⇒ b = – 1∴ a − b = −2 + 1 a + b −2 − 1 = − 1 = 1 −3 3
-
If m + 1 = 4, find the value of (m − 2)2 + 1 . m − 2 (m − 2)2
-
View Hint View Answer Discuss in Forum
m + 1 = 4 m − 2 ⇒ m + 1 – 2 = 4 – 2 m − 2 ⇒ (m − 2) + 1 = 4 – 2 = 2 (m − 2)
On squaring both sides,(m − 2)2 + 1 + 2(m − 2) 1 = 4 (m − 2)2 m − 2 ⇒ (m − 2)2 + 1 = 4 − 2 = 2 (m − 2)2
Second Method :m + 1 = 4 m − 2 m − 2 + 1 = 4 − 2 m − 2 m − 2 + 1 = 2 m − 2 (m − 2)2 + 1 = 2 (m − 2)2 Correct Option: C
m + 1 = 4 m − 2 ⇒ m + 1 – 2 = 4 – 2 m − 2 ⇒ (m − 2) + 1 = 4 – 2 = 2 (m − 2)
On squaring both sides,(m − 2)2 + 1 + 2(m − 2) 1 = 4 (m − 2)2 m − 2 ⇒ (m − 2)2 + 1 = 4 − 2 = 2 (m − 2)2
Second Method :m + 1 = 4 m − 2 m − 2 + 1 = 4 − 2 m − 2 m − 2 + 1 = 2 m − 2 (m − 2)2 + 1 = 2 (m − 2)2