Algebra


  1. If 999x + 888y = 1332 888x + 999y = 555, then the value of x + y is









  1. View Hint View Answer Discuss in Forum

    999x + 888y = 1332
    888x + 999y = 555
    On adding,
    1887x + 1887y = 1887
    ⇒  1887 (x + y) = 1887

    ⇒  x + y =
    1887
    = 1
    1887

    Correct Option: C

    999x + 888y = 1332
    888x + 999y = 555
    On adding,
    1887x + 1887y = 1887
    ⇒  1887 (x + y) = 1887

    ⇒  x + y =
    1887
    = 1
    1887


  1. If bc + ab + ca = abc, then the value of
    b + c
    +
    a + c
    +
    a + b
    = 1, then the value of
    a2
    +
    b2
    +
    c2
    is
    a2 + bcb2 + cac2 + aba2 + bcb2 + acc2 + ab









  1. View Hint View Answer Discuss in Forum

    a2 − bc
    +
    b2 − ca
    +
    c2 − ab
    = 1
    a2 + bcb2 + cac2 + ab

    ⇒ 
    a2 − bc
    + 1 +
    b2 − ca
    + 1 +
    c2 − ab
    + 1 = 4
    a2 + bcb2 + cac2 + ab

    ⇒ 
    a2 − bc + a2 + bc
    +
    b2 − ca + b2 + ca
    +
    c2 − ab + c2 + ab
    = 4
    a2 + bcb2 + cac2 + ab

    ⇒ 
    2a2
    +
    2b2
    +
    2c2
    = 4
    a2 + bcb2 + cac2 + ab

    ⇒ 
    a2
    +
    b2
    +
    c2
    =
    4
    = 2
    a2 + bcb2 + cac2 + ab2

    Correct Option: D

    a2 − bc
    +
    b2 − ca
    +
    c2 − ab
    = 1
    a2 + bcb2 + cac2 + ab

    ⇒ 
    a2 − bc
    + 1 +
    b2 − ca
    + 1 +
    c2 − ab
    + 1 = 4
    a2 + bcb2 + cac2 + ab

    ⇒ 
    a2 − bc + a2 + bc
    +
    b2 − ca + b2 + ca
    +
    c2 − ab + c2 + ab
    = 4
    a2 + bcb2 + cac2 + ab

    ⇒ 
    2a2
    +
    2b2
    +
    2c2
    = 4
    a2 + bcb2 + cac2 + ab

    ⇒ 
    a2
    +
    b2
    +
    c2
    =
    4
    = 2
    a2 + bcb2 + cac2 + ab2



  1. If bc + ab + ca = abc, then the value of
    b + c
    +
    a + c
    +
    a + b
    is
    bc(a − 1)ac(b − 1)ab(c − 1)









  1. View Hint View Answer Discuss in Forum

    Given, bc + ab + ca = abc
    ∴  bc + ab = abc – ac
    ab + ca = abc – bc
    bc + ca = abc – ab

    ∴  Expression =
    b + c
    +
    a + c
    +
    a + b
    abc − bcabc − acabc − ab

    =
    b + c
    +
    a + c
    +
    a + b
    ab + acbc + abbc + ca

    =
    b + c
    +
    a + c
    +
    a + b
    a(b + c)b(c + a)c(a + b)

    =
    1
    +
    1
    +
    1
    abc

    =
    bc + ac + ab
    abc

    =
    abc
    = 1
    abc

    Correct Option: D

    Given, bc + ab + ca = abc
    ∴  bc + ab = abc – ac
    ab + ca = abc – bc
    bc + ca = abc – ab

    ∴  Expression =
    b + c
    +
    a + c
    +
    a + b
    abc − bcabc − acabc − ab

    =
    b + c
    +
    a + c
    +
    a + b
    ab + acbc + abbc + ca

    =
    b + c
    +
    a + c
    +
    a + b
    a(b + c)b(c + a)c(a + b)

    =
    1
    +
    1
    +
    1
    abc

    =
    bc + ac + ab
    abc

    =
    abc
    = 1
    abc


  1. If   x =
    a − b
    , y =
    b − c
    , z =
    c − a
    , then
    (1 − x)(1 − y)(1 − z)
    is equal to
    a + bb + cc + a(1 + x)(1 + y)(1 + z)









  1. View Hint View Answer Discuss in Forum

    x
    =
    a − b
    1a + b

    By componendo and dividendo,

    =
    a + b − a + b
    =
    b
    a + b + a − ba

    Similarly,
    1 − y
    =
    c
    ;
    1 − z
    =
    a
    1 + yb1 + zc

    ∴  Expression =
    (1 − x)(1 − y)(1 − z)
    (1 + x)(1 + y)(1 + z)

    =
    b
    ×
    c
    ×
    a
    = 1
    abc

    Correct Option: A

    x
    =
    a − b
    1a + b

    By componendo and dividendo,

    =
    a + b − a + b
    =
    b
    a + b + a − ba

    Similarly,
    1 − y
    =
    c
    ;
    1 − z
    =
    a
    1 + yb1 + zc

    ∴  Expression =
    (1 − x)(1 − y)(1 − z)
    (1 + x)(1 + y)(1 + z)

    =
    b
    ×
    c
    ×
    a
    = 1
    abc



  1. If a, b, c are real numbers and a2 + b2 + c2 = 2 (a – b – c) – 3, then the value of a + b + c is









  1. View Hint View Answer Discuss in Forum

    a2 + b2 + c2 = 2a – 2b – 2c – 3
    ⇒  a2 – 2a + 1 + b2 + 2b + 1 + c2 + 2c + 1 = 0
    ⇒  (a – 1)2 + (b + 1)2 + (c + 1)2 = 0
    ⇒  a – 1 = 0, b + 1 = 0, c + 1 = 0
    ⇒  a = 1, b = –1, c = –1
    ∴  a + b + c = 1 – 1 – 1 = –1

    Correct Option: A

    a2 + b2 + c2 = 2a – 2b – 2c – 3
    ⇒  a2 – 2a + 1 + b2 + 2b + 1 + c2 + 2c + 1 = 0
    ⇒  (a – 1)2 + (b + 1)2 + (c + 1)2 = 0
    ⇒  a – 1 = 0, b + 1 = 0, c + 1 = 0
    ⇒  a = 1, b = –1, c = –1
    ∴  a + b + c = 1 – 1 – 1 = –1