Home » Aptitude » Algebra » Question
  1. If bc + ab + ca = abc, then the value of
    b + c
    +
    a + c
    +
    a + b
    = 1, then the value of
    a2
    +
    b2
    +
    c2
    is
    a2 + bcb2 + cac2 + aba2 + bcb2 + acc2 + ab
    1. 0
    2. 1
    3. – 1
    4. 2
Correct Option: D

a2 − bc
+
b2 − ca
+
c2 − ab
= 1
a2 + bcb2 + cac2 + ab

⇒ 
a2 − bc
+ 1 +
b2 − ca
+ 1 +
c2 − ab
+ 1 = 4
a2 + bcb2 + cac2 + ab

⇒ 
a2 − bc + a2 + bc
+
b2 − ca + b2 + ca
+
c2 − ab + c2 + ab
= 4
a2 + bcb2 + cac2 + ab

⇒ 
2a2
+
2b2
+
2c2
= 4
a2 + bcb2 + cac2 + ab

⇒ 
a2
+
b2
+
c2
=
4
= 2
a2 + bcb2 + cac2 + ab2



Your comments will be displayed only after manual approval.