Algebra


  1. If a + 2√3, find the value of
    a3
    .
    a6 + 3a3 + 1









  1. View Hint View Answer Discuss in Forum

    a = 2 + √3

    1
    =
    1
    a2 + √3

    =
    2 - √3
    =
    2 - √3
    (2 + √3)(2 - √3)4 - 3

    = 2 - √3
    Now,
    =
    =
    1
    a6 + 3a³ + 13a³ + 3 + 1/a³

    [Dividing numerator and denominator by a³]
    =
    1
    a³ +
    1
    + 3

    =
    1
    a +
    1
    ³ - 3a +
    1
    + 3
    aa

    =
    1
    (4)³ - 3(4) + 3

    =
    1
    =
    1
    (4)³ - 3(4) + 355

    Correct Option: B

    a = 2 + √3

    1
    =
    1
    a2 + √3

    =
    2 - √3
    =
    2 - √3
    (2 + √3)(2 - √3)4 - 3

    = 2 - √3
    Now,
    =
    =
    1
    a6 + 3a³ + 13a³ + 3 + 1/a³

    [Dividing numerator and denominator by a³]
    =
    1
    a³ +
    1
    + 3

    =
    1
    a +
    1
    ³ - 3a +
    1
    + 3
    aa

    =
    1
    (4)³ - 3(4) + 3

    =
    1
    =
    1
    (4)³ - 3(4) + 355


  1. If a + b + c = 0, then
    bc
    +
    ca
    +
    ab
    = ?
    bc − a2ca − b2ab − c2









  1. View Hint View Answer Discuss in Forum

    a + b + c = 0
    ⇒ a = – b – c
    ⇒ a² = – ab – ac
    ∴ bc – a² = bc + ab + ac
    Similarly,
    ca – b² = ca + ab + bc
    ab – c² = ab + bc + ca

    bc
    +
    ca
    +
    ab
    bc - a²ca - b²ab - c²

    =
    bc
    +
    ca
    +
    ab
    ab + bc + caab + bc + caab + bc + ca

    =
    ba + bc + ca
    = 1
    ab + bc + ca

    Correct Option: A

    a + b + c = 0
    ⇒ a = – b – c
    ⇒ a² = – ab – ac
    ∴ bc – a² = bc + ab + ac
    Similarly,
    ca – b² = ca + ab + bc
    ab – c² = ab + bc + ca

    bc
    +
    ca
    +
    ab
    bc - a²ca - b²ab - c²

    =
    bc
    +
    ca
    +
    ab
    ab + bc + caab + bc + caab + bc + ca

    =
    ba + bc + ca
    = 1
    ab + bc + ca



  1. Resolve into factors :
    (x – 1) (x + 1) (x + 3) (x + 5) + 7









  1. View Hint View Answer Discuss in Forum

    (x – 1) (x + 5) (x + 1) (x + 3) + 7
    = (x2 + 5x – x – 5) (x2 + 3x + x + 3) + 7
    = (x2 + 4x – 5) (x2 + 3x + x + 3) + 7
    Putting x2 + 4x = y, we have,
    Expression = (y – 5) (y + 3) + 7
    = y2 – 5y + 3y – 15 + 7
    = y2 – 2y – 8
    = y2 – 4y + 2y – 8
    = y (y – 4) + 2 (y – 4)
    = (y + 2) (y – 4)
    Now,
    y + 2 = x2 + 4x + 2
    = x2 + 4x + 2 – 2
    = (x + 2)2 – (√2)2
    (x + 2 + √2)(x + 2 − √2)
    Again, y – 4
    = x2 + 4x – 4
    = x2 + 4x + 4 – 8
    = (x + 2)2 – (2√2)2
    = (x + 2 + 2√2)(x + 2 − 2√2)
    ∴  Factorisation is
    = (x + 2 + √2)(x + 2 − √2)
    (x + 2 + 2√2)(x + 2 − 2√2)

    Correct Option: A

    (x – 1) (x + 5) (x + 1) (x + 3) + 7
    = (x2 + 5x – x – 5) (x2 + 3x + x + 3) + 7
    = (x2 + 4x – 5) (x2 + 3x + x + 3) + 7
    Putting x2 + 4x = y, we have,
    Expression = (y – 5) (y + 3) + 7
    = y2 – 5y + 3y – 15 + 7
    = y2 – 2y – 8
    = y2 – 4y + 2y – 8
    = y (y – 4) + 2 (y – 4)
    = (y + 2) (y – 4)
    Now,
    y + 2 = x2 + 4x + 2
    = x2 + 4x + 2 – 2
    = (x + 2)2 – (√2)2
    (x + 2 + √2)(x + 2 − √2)
    Again, y – 4
    = x2 + 4x – 4
    = x2 + 4x + 4 – 8
    = (x + 2)2 – (2√2)2
    = (x + 2 + 2√2)(x + 2 − 2√2)
    ∴  Factorisation is
    = (x + 2 + √2)(x + 2 − √2)
    (x + 2 + 2√2)(x + 2 − 2√2)


  1. If   2x −
    1
    = 5, find the value of 27x3 +
    1
    .
    3x8x3









  1. View Hint View Answer Discuss in Forum

    2x −
    1
    = 5
    3x

    On multiplying both sides by 3/2,
    3x −
    1
    =
    15
    2x2

    On cubing both sides,
    27x3
    1
    −3.3x.
    1
    8x32x

    3x −
    1
    =
    3375
    2x8

    ⇒  27x3
    1
    9
    ×
    15
    8x322

    =
    3375
    8

    ⇒  27x3
    1
    =
    3375
    +
    135
    8x384

    =
    3375 + 270
    =
    3645
    88

    Correct Option: A

    2x −
    1
    = 5
    3x

    On multiplying both sides by 3/2,
    3x −
    1
    =
    15
    2x2

    On cubing both sides,
    27x3
    1
    −3.3x.
    1
    8x32x

    3x −
    1
    =
    3375
    2x8

    ⇒  27x3
    1
    9
    ×
    15
    8x322

    =
    3375
    8

    ⇒  27x3
    1
    =
    3375
    +
    135
    8x384

    =
    3375 + 270
    =
    3645
    88



  1. What are the factors of the following expression ?
    a2 +
    1
    − 3a +
    13
    + 34 :
    a2a









  1. View Hint View Answer Discuss in Forum

    a2 +
    1
    − 13 a −
    1
    + 34
    a2a

    = a −
    1
    2 + 2 − 3 a −
    1
    + 34
    aa

    = a −
    1
    2 − 13 a −
    1
    + 36
    aa

    Let a −
    1
    = x
    a

    ∴  Expression = x2 – 13x + 36
    = x2 – 9x – 4x + 36 = x (x – 9) – 4 (x – 9)
    = (x – 4) (x – 9)
    = a −
    1
    − 4 a −
    1
    − 9
    aa

    Correct Option: B

    a2 +
    1
    − 13 a −
    1
    + 34
    a2a

    = a −
    1
    2 + 2 − 3 a −
    1
    + 34
    aa

    = a −
    1
    2 − 13 a −
    1
    + 36
    aa

    Let a −
    1
    = x
    a

    ∴  Expression = x2 – 13x + 36
    = x2 – 9x – 4x + 36 = x (x – 9) – 4 (x – 9)
    = (x – 4) (x – 9)
    = a −
    1
    − 4 a −
    1
    − 9
    aa