Algebra
- If p = 99 then, the value of p(p2 + 3p + 3) is :
-
View Hint View Answer Discuss in Forum
p = 99 (Given)
Expression = p(p2 + 3p + 3)
= p3 + 3p2 + 3p
= p3 + 3p2 + 3p + 1 – 1
= (p + 1)3 – 1
= (99 + 1)3 – 1 = (100)3 – 1
= 1000000 – 1 = 999999Correct Option: C
p = 99 (Given)
Expression = p(p2 + 3p + 3)
= p3 + 3p2 + 3p
= p3 + 3p2 + 3p + 1 – 1
= (p + 1)3 – 1
= (99 + 1)3 – 1 = (100)3 – 1
= 1000000 – 1 = 999999
-
If x + 1 = 1 then the value of x2 + 3x + 1 is x x2 + 7x + 1
-
View Hint View Answer Discuss in Forum
x + 1 = 1 (Given) x Expression = x2 + 3x + 1 x2 + 7x + 1 = x + 1 + 3 x x + 1 + 7 x
(Dividing numerator and denominator by x)= 1 + 3 = 4 = 1 1 + 7 8 2 Correct Option: C
x + 1 = 1 (Given) x Expression = x2 + 3x + 1 x2 + 7x + 1 = x + 1 + 3 x x + 1 + 7 x
(Dividing numerator and denominator by x)= 1 + 3 = 4 = 1 1 + 7 8 2
-
If m − a2 + m − b2 + m − c2 = 3 , then the value of m is b2 + c2 c2 + a2 a2 + b2
-
View Hint View Answer Discuss in Forum
m − a2 + m − b2 + m − c2 − 3 = 0 b2 + c2 c2 + a2 a2 + b2 ⇒ m − a2 − 1 + m − b2 − 1 + m − c2 − 1 = 0 b2 + c2 c2 + a2 a2 + b2 ⇒ m − a2 − b2 − c2 + m − b2 − c2 − a2 + m − c2 − a2 − b2 = 0 b2 + c2 c2 + a2 a2 + b2 ⇒ m − (a2 + b2 + c2) + m − (a2 + b2 + c2) + m −(a2 + b2 + c2) = 0 b2 + c2 c2 + a2 a2 + b2
∴ Each term = 0∴ m − (a2 + b2 + c2) = 0 b2 + c2
⇒ m − (a2 + b2 + c2) = 0
⇒ m = (a2 + b2 + c2)Correct Option: C
m − a2 + m − b2 + m − c2 − 3 = 0 b2 + c2 c2 + a2 a2 + b2 ⇒ m − a2 − 1 + m − b2 − 1 + m − c2 − 1 = 0 b2 + c2 c2 + a2 a2 + b2 ⇒ m − a2 − b2 − c2 + m − b2 − c2 − a2 + m − c2 − a2 − b2 = 0 b2 + c2 c2 + a2 a2 + b2 ⇒ m − (a2 + b2 + c2) + m − (a2 + b2 + c2) + m −(a2 + b2 + c2) = 0 b2 + c2 c2 + a2 a2 + b2
∴ Each term = 0∴ m − (a2 + b2 + c2) = 0 b2 + c2
⇒ m − (a2 + b2 + c2) = 0
⇒ m = (a2 + b2 + c2)
-
If x = 1 , y = 1 , then the value of 8xy (x2 + y2) is 2 + √3 2 − √3
-
View Hint View Answer Discuss in Forum
x = 1 2 + √3 = 1 × 1 = 2 − √3 2 + √3 2 − √ 3 4 − 3
= 2 − √ 3∴ y = 1 = 2 + √ 3 2 − √ 3
∴ x + y = 2 – √ 3 + 2 + √ 3 = 4
xy = (2 – √ 3 ) (2 + √ 3 )
= 4 – 3 = 1
∴ 8xy (x2 + y2)
= 8xy [(x + y)2 – 2 xy]
= 8 × 1 (42 – 2 × 1)
= 8 (16 – 2) = 8 × 14 = 112Correct Option: C
x = 1 2 + √3 = 1 × 1 = 2 − √3 2 + √3 2 − √ 3 4 − 3
= 2 − √ 3∴ y = 1 = 2 + √ 3 2 − √ 3
∴ x + y = 2 – √ 3 + 2 + √ 3 = 4
xy = (2 – √ 3 ) (2 + √ 3 )
= 4 – 3 = 1
∴ 8xy (x2 + y2)
= 8xy [(x + y)2 – 2 xy]
= 8 × 1 (42 – 2 × 1)
= 8 (16 – 2) = 8 × 14 = 112
-
If a = √x + 2 + √x − 2 , then the value of (a2 – ax) is √x + 2 − √x − 2
-
View Hint View Answer Discuss in Forum
a = √x + 2 + √x − 2 √x + 2 − √x − 2
By componendo and dividendo,a + 1 a − 1 = √x + 2 + √x − 2 + √x + 2 − √x − 2 √x + 2 + √x − 2 − √x + 2 + √x − 2 ⇒ a + 1 a − 1 = 2√x + 2 = √x + 2 2 √x − 2 √x − 2
On squaring both sides,= a2 + 2a + 1 = x + 2 a2 − 2a + 1 x − 2 ⇒ a2 + 1 + 2a = x + 2 a2 + 1 − 2a x − 2
By componendo and dividendo,2(a2 + 1) = 2x 4a 4 ⇒ a2 + 1 = x a
⇒ a2 + 1 = ax
⇒ a2 – ax = – 1Correct Option: C
a = √x + 2 + √x − 2 √x + 2 − √x − 2
By componendo and dividendo,a + 1 a − 1 = √x + 2 + √x − 2 + √x + 2 − √x − 2 √x + 2 + √x − 2 − √x + 2 + √x − 2 ⇒ a + 1 a − 1 = 2√x + 2 = √x + 2 2 √x − 2 √x − 2
On squaring both sides,= a2 + 2a + 1 = x + 2 a2 − 2a + 1 x − 2 ⇒ a2 + 1 + 2a = x + 2 a2 + 1 − 2a x − 2
By componendo and dividendo,2(a2 + 1) = 2x 4a 4 ⇒ a2 + 1 = x a
⇒ a2 + 1 = ax
⇒ a2 – ax = – 1