Algebra


  1. If p = 99 then, the value of p(p2 + 3p + 3) is :









  1. View Hint View Answer Discuss in Forum

    p = 99 (Given)
    Expression = p(p2 + 3p + 3)
    = p3 + 3p2 + 3p
    = p3 + 3p2 + 3p + 1 – 1
    = (p + 1)3 – 1
    = (99 + 1)3 – 1 = (100)3 – 1
    = 1000000 – 1 = 999999

    Correct Option: C

    p = 99 (Given)
    Expression = p(p2 + 3p + 3)
    = p3 + 3p2 + 3p
    = p3 + 3p2 + 3p + 1 – 1
    = (p + 1)3 – 1
    = (99 + 1)3 – 1 = (100)3 – 1
    = 1000000 – 1 = 999999


  1. If   x +
    1
    = 1 then the value of
    x2 + 3x + 1
    is
    xx2 + 7x + 1









  1. View Hint View Answer Discuss in Forum

    x +
    1
    = 1   (Given)
    x

    Expression =
    x2 + 3x + 1
    x2 + 7x + 1

    = x +
    1
    + 3
    x
    x +
    1
    + 7
    x

    (Dividing numerator and denominator by x)
    =
    1 + 3
    =
    4
    =
    1
    1 + 782

    Correct Option: C

    x +
    1
    = 1   (Given)
    x

    Expression =
    x2 + 3x + 1
    x2 + 7x + 1

    = x +
    1
    + 3
    x
    x +
    1
    + 7
    x

    (Dividing numerator and denominator by x)
    =
    1 + 3
    =
    4
    =
    1
    1 + 782



  1. If  
    m − a2
    +
    m − b2
    +
    m − c2
    = 3 , then the value of m is
    b2 + c2c2 + a2a2 + b2









  1. View Hint View Answer Discuss in Forum

    m − a2
    +
    m − b2
    +
    m − c2
    − 3 = 0
    b2 + c2c2 + a2a2 + b2

    ⇒ 
    m − a2
    − 1 +
    m − b2
    − 1 +
    m − c2
    − 1 = 0
    b2 + c2c2 + a2a2 + b2

    ⇒ 
    m − a2 − b2 − c2
    +
    m − b2 − c2 − a2
    +
    m − c2 − a2 − b2
    = 0
    b2 + c2c2 + a2a2 + b2

    ⇒ 
    m − (a2 + b2 + c2)
    +
    m − (a2 + b2 + c2)
    +
    m −(a2 + b2 + c2)
    = 0
    b2 + c2c2 + a2a2 + b2

    ∴  Each term = 0
    ∴ 
    m − (a2 + b2 + c2)
    = 0
    b2 + c2

    ⇒  m − (a2 + b2 + c2) = 0
    ⇒  m = (a2 + b2 + c2)

    Correct Option: C

    m − a2
    +
    m − b2
    +
    m − c2
    − 3 = 0
    b2 + c2c2 + a2a2 + b2

    ⇒ 
    m − a2
    − 1 +
    m − b2
    − 1 +
    m − c2
    − 1 = 0
    b2 + c2c2 + a2a2 + b2

    ⇒ 
    m − a2 − b2 − c2
    +
    m − b2 − c2 − a2
    +
    m − c2 − a2 − b2
    = 0
    b2 + c2c2 + a2a2 + b2

    ⇒ 
    m − (a2 + b2 + c2)
    +
    m − (a2 + b2 + c2)
    +
    m −(a2 + b2 + c2)
    = 0
    b2 + c2c2 + a2a2 + b2

    ∴  Each term = 0
    ∴ 
    m − (a2 + b2 + c2)
    = 0
    b2 + c2

    ⇒  m − (a2 + b2 + c2) = 0
    ⇒  m = (a2 + b2 + c2)


  1. If x =
    1
    , y =
    1
    , then the value of 8xy (x2 + y2) is
    2 + √32 − √3









  1. View Hint View Answer Discuss in Forum

    x =
    1
    2 + √3

    =
    1
    ×
    1
    =
    2 − √3
    2 + √3 2 − √ 3 4 − 3

    = 2 − √ 3
    ∴  y =
    1
    = 2 + √ 3
    2 − √ 3

    ∴  x + y = 2 – √ 3 + 2 + √ 3 = 4
    xy = (2 – √ 3 ) (2 + √ 3 )
    = 4 – 3 = 1
    ∴  8xy (x2 + y2)
    = 8xy [(x + y)2 – 2 xy]
    = 8 × 1 (42 – 2 × 1)
    = 8 (16 – 2) = 8 × 14 = 112

    Correct Option: C

    x =
    1
    2 + √3

    =
    1
    ×
    1
    =
    2 − √3
    2 + √3 2 − √ 3 4 − 3

    = 2 − √ 3
    ∴  y =
    1
    = 2 + √ 3
    2 − √ 3

    ∴  x + y = 2 – √ 3 + 2 + √ 3 = 4
    xy = (2 – √ 3 ) (2 + √ 3 )
    = 4 – 3 = 1
    ∴  8xy (x2 + y2)
    = 8xy [(x + y)2 – 2 xy]
    = 8 × 1 (42 – 2 × 1)
    = 8 (16 – 2) = 8 × 14 = 112



  1. If a =
    x + 2 + √x − 2
    , then the value of (a2 – ax) is
    x + 2 − √x − 2









  1. View Hint View Answer Discuss in Forum

    a =
    x + 2 + √x − 2
    x + 2 − √x − 2

    By componendo and dividendo,
    a + 1
    a − 1

    =
    x + 2 + √x − 2 + √x + 2 − √x − 2
    x + 2 + √x − 2 − √x + 2 + √x − 2

    ⇒ 
    a + 1
    a − 1

    =
    2√x + 2
    =
    x + 2
    2 √x − 2x − 2

    On squaring both sides,
    =
    a2 + 2a + 1
    =
    x + 2
    a2 − 2a + 1 x − 2

    ⇒ 
    a2 + 1 + 2a
    =
    x + 2
    a2 + 1 − 2a x − 2

    By componendo and dividendo,
    2(a2 + 1)
    =
    2x
    4a 4

    ⇒ 
    a2 + 1
    = x
    a

    ⇒  a2 + 1 = ax
    ⇒  a2 – ax = – 1

    Correct Option: C

    a =
    x + 2 + √x − 2
    x + 2 − √x − 2

    By componendo and dividendo,
    a + 1
    a − 1

    =
    x + 2 + √x − 2 + √x + 2 − √x − 2
    x + 2 + √x − 2 − √x + 2 + √x − 2

    ⇒ 
    a + 1
    a − 1

    =
    2√x + 2
    =
    x + 2
    2 √x − 2x − 2

    On squaring both sides,
    =
    a2 + 2a + 1
    =
    x + 2
    a2 − 2a + 1 x − 2

    ⇒ 
    a2 + 1 + 2a
    =
    x + 2
    a2 + 1 − 2a x − 2

    By componendo and dividendo,
    2(a2 + 1)
    =
    2x
    4a 4

    ⇒ 
    a2 + 1
    = x
    a

    ⇒  a2 + 1 = ax
    ⇒  a2 – ax = – 1