-
If x = 1 , y = 1 , then the value of 8xy (x2 + y2) is 2 + √3 2 − √3
-
- 196
- 290
- 112
- 194
Correct Option: C
x = | |
2 + √3 |
= | × | = | |||
2 + √3 | 2 − √ 3 | 4 − 3 |
= 2 − √ 3
∴ y = | = 2 + √ 3 | |
2 − √ 3 |
∴ x + y = 2 – √ 3 + 2 + √ 3 = 4
xy = (2 – √ 3 ) (2 + √ 3 )
= 4 – 3 = 1
∴ 8xy (x2 + y2)
= 8xy [(x + y)2 – 2 xy]
= 8 × 1 (42 – 2 × 1)
= 8 (16 – 2) = 8 × 14 = 112