Algebra


  1. If   (2 + √3) = b (2 – √3)b = 1, then the value of
    1
    +
    1
      is
    ab









  1. View Hint View Answer Discuss in Forum

    (2 + √3)a = (2 – √3)b = 1

    ⇒  a =
    1
    2 + √3

    ∴ 
    1
    = 2 + √3
    a

    Similarly,
    b =
    1
    2 − √3

    1
    = 2 − √3
    b

    ∴ 
    1
    +
    1
    = 2 + √3 + 2 − √3 = 4
    ab

    Correct Option: D

    (2 + √3)a = (2 – √3)b = 1

    ⇒  a =
    1
    2 + √3

    ∴ 
    1
    = 2 + √3
    a

    Similarly,
    b =
    1
    2 − √3

    1
    = 2 − √3
    b

    ∴ 
    1
    +
    1
    = 2 + √3 + 2 − √3 = 4
    ab


  1. If a + b + c = 3, a2 + b2 + c2 = 6 and
    1
    +
    1
    +
    1
    = 1, where a, b, c are all non-zero, then ‘abc’ is equal to
    abc









  1. View Hint View Answer Discuss in Forum

    a + b + c = 3; a2 + b2 + c2 = 6
    ∴  (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
    ⇒  32 = 6 + 2 (ab + bc + ca)
    ⇒  9 – 6 = 2(ab + bc + ca)

    ⇒ ab + bc + ca =
    3
    2

    ∴ 
    1
    +
    1
    +
    1
    = 1
    abc

    ⇒ 
    bc + ac + ab
    = 1
    abc

    ⇒  abc = ab + bc + ca =
    3
    2

    Correct Option: B

    a + b + c = 3; a2 + b2 + c2 = 6
    ∴  (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
    ⇒  32 = 6 + 2 (ab + bc + ca)
    ⇒  9 – 6 = 2(ab + bc + ca)

    ⇒ ab + bc + ca =
    3
    2

    ∴ 
    1
    +
    1
    +
    1
    = 1
    abc

    ⇒ 
    bc + ac + ab
    = 1
    abc

    ⇒  abc = ab + bc + ca =
    3
    2



  1. If a, b, c are positive and a + b + c = 1, then the least value of  
    1
    +
    1
    +
    1
      is
    abc









  1. View Hint View Answer Discuss in Forum

    The value of
    1
    +
    1
    +
    1
    will be minimum, if values of a, b and c be maximum.
    abc

    a + b + c = 1
    ∴ Values of a, b and c will be maximum if
    a = b = c
    ∴ a = b = c =
    1
    3

    1
    +
    1
    +
    1
    = 3 + 3 + 3 = 9
    abc

    Correct Option: A

    The value of
    1
    +
    1
    +
    1
    will be minimum, if values of a, b and c be maximum.
    abc

    a + b + c = 1
    ∴ Values of a, b and c will be maximum if
    a = b = c
    ∴ a = b = c =
    1
    3

    1
    +
    1
    +
    1
    = 3 + 3 + 3 = 9
    abc


  1. The reciprocal of x +
    1
    is
    x









  1. View Hint View Answer Discuss in Forum

    x +
    1
    =
    x² + 1
    xx

    ∴ Its reciprocal =
    x² + 1
    10

    Correct Option: B

    x +
    1
    =
    x² + 1
    xx

    ∴ Its reciprocal =
    x² + 1
    10



  1. If  
    5x
    =
    1
    , then the value of x +
    1
    is
    2x2 5x + 132x









  1. View Hint View Answer Discuss in Forum

    5x
    =
    1
    2x² + 5x + 13

    Dividing Numerator and Denominator by
    5
    =
    1
    2x + 5 +
    1
    3
    x

    On dividing Nr and Dr by 2,
    5
    =
    3
    1
    x +
    5
    +
    1
    3
    22x

    x +
    1
    +
    5
    =
    15
    2x22

    ⇒ x +
    1
    =
    15
    -
    5
    =
    10
    = 5
    2x222

    Correct Option: D

    5x
    =
    1
    2x² + 5x + 13

    Dividing Numerator and Denominator by
    5
    =
    1
    2x + 5 +
    1
    3
    x

    On dividing Nr and Dr by 2,
    5
    =
    3
    1
    x +
    5
    +
    1
    3
    22x

    x +
    1
    +
    5
    =
    15
    2x22

    ⇒ x +
    1
    =
    15
    -
    5
    =
    10
    = 5
    2x222