Algebra
-
If (2 + √3) = b (2 – √3)b = 1, then the value of 1 + 1 is a b
-
View Hint View Answer Discuss in Forum
(2 + √3)a = (2 – √3)b = 1
⇒ a = 1 2 + √3 ∴ 1 = 2 + √3 a
Similarly,b = 1 2 − √3 1 = 2 − √3 b ∴ 1 + 1 = 2 + √3 + 2 − √3 = 4 a b Correct Option: D
(2 + √3)a = (2 – √3)b = 1
⇒ a = 1 2 + √3 ∴ 1 = 2 + √3 a
Similarly,b = 1 2 − √3 1 = 2 − √3 b ∴ 1 + 1 = 2 + √3 + 2 − √3 = 4 a b
-
If a + b + c = 3, a2 + b2 + c2 = 6 and 1 + 1 + 1 = 1, where a, b, c are all non-zero, then ‘abc’ is equal to a b c
-
View Hint View Answer Discuss in Forum
a + b + c = 3; a2 + b2 + c2 = 6
∴ (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
⇒ 32 = 6 + 2 (ab + bc + ca)
⇒ 9 – 6 = 2(ab + bc + ca)⇒ ab + bc + ca = 3 2 ∴ 1 + 1 + 1 = 1 a b c ⇒ bc + ac + ab = 1 abc ⇒ abc = ab + bc + ca = 3 2 Correct Option: B
a + b + c = 3; a2 + b2 + c2 = 6
∴ (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
⇒ 32 = 6 + 2 (ab + bc + ca)
⇒ 9 – 6 = 2(ab + bc + ca)⇒ ab + bc + ca = 3 2 ∴ 1 + 1 + 1 = 1 a b c ⇒ bc + ac + ab = 1 abc ⇒ abc = ab + bc + ca = 3 2
-
If a, b, c are positive and a + b + c = 1, then the least value of 1 + 1 + 1 is a b c
-
View Hint View Answer Discuss in Forum
The value of 1 + 1 + 1 will be minimum, if values of a, b and c be maximum. a b c
a + b + c = 1
∴ Values of a, b and c will be maximum if
a = b = c∴ a = b = c = 1 3 ∴ 1 + 1 + 1 = 3 + 3 + 3 = 9 a b c Correct Option: A
The value of 1 + 1 + 1 will be minimum, if values of a, b and c be maximum. a b c
a + b + c = 1
∴ Values of a, b and c will be maximum if
a = b = c∴ a = b = c = 1 3 ∴ 1 + 1 + 1 = 3 + 3 + 3 = 9 a b c
-
The reciprocal of x + 1 is x
-
View Hint View Answer Discuss in Forum
x + 1 = x² + 1 x x ∴ Its reciprocal = x² + 1 10 Correct Option: B
x + 1 = x² + 1 x x ∴ Its reciprocal = x² + 1 10
-
If 5x = 1 , then the value of x + 1 is 2x2 5x + 1 3 2x
-
View Hint View Answer Discuss in Forum
5x = 1 2x² + 5x + 1 3
Dividing Numerator and Denominator by5 = 1 2x + 5 + 1 3 x
On dividing Nr and Dr by 2,5 = 3 1 x + 5 + 1 3 2 2x ⇒ x + 1 + 5 = 15 2x 2 2 ⇒ x + 1 = 15 - 5 = 10 = 5 2x 2 2 2 Correct Option: D
5x = 1 2x² + 5x + 1 3
Dividing Numerator and Denominator by5 = 1 2x + 5 + 1 3 x
On dividing Nr and Dr by 2,5 = 3 1 x + 5 + 1 3 2 2x ⇒ x + 1 + 5 = 15 2x 2 2 ⇒ x + 1 = 15 - 5 = 10 = 5 2x 2 2 2