Algebra


  1. If a = 2, b = –3 then the value of 27 a3 – 54 a2b + 36 ab2 – 8b3 is









  1. View Hint View Answer Discuss in Forum

    27a3 – 54a2b + 36ab2 – 8b3
    = (3a)3 – 3(3a)2 (2b) + 3 × 3a × (2b)2 – (2b)3
    = (3a – 2b)3
    = (3 × 2 –2 (–3))3 = (6 + 6)3
    = (12)3 = 1728

    Correct Option: D

    27a3 – 54a2b + 36ab2 – 8b3
    = (3a)3 – 3(3a)2 (2b) + 3 × 3a × (2b)2 – (2b)3
    = (3a – 2b)3
    = (3 × 2 –2 (–3))3 = (6 + 6)3
    = (12)3 = 1728


  1. If x + y + z = 9 then the value of (x – 4)3 + (y – 2)3 + (z – 3)3 – 3 (x – 4) (y – 2) (z – 3) is









  1. View Hint View Answer Discuss in Forum

    If a + b + c = 0, then a3 + b3 + c3 – 3abc = 0
    Here, x – 4 + y – 2 + z – 3
    = x + y + z – 9 = 9 – 9 = 0
    ∴  (x – 4)3 + (y – 2)3 + (z – 3)3 – 3
    (x – 4) (y – 2) (z – 3) = 0

    Correct Option: C

    If a + b + c = 0, then a3 + b3 + c3 – 3abc = 0
    Here, x – 4 + y – 2 + z – 3
    = x + y + z – 9 = 9 – 9 = 0
    ∴  (x – 4)3 + (y – 2)3 + (z – 3)3 – 3
    (x – 4) (y – 2) (z – 3) = 0



  1. If  
    x3 + 3y2x
    =
    35
    , what is
    x
    =
    y3 + 3x2y19y









  1. View Hint View Answer Discuss in Forum

    x3 + 3y2x
    =
    35
    y3 + 3x2y19

    By componendo and dividendo,
    x3 + 3y2x + y3 + 3x2y
    =
    35 + 19
    x3 + 3y2x − y3 − 3x2y35 − 19

    =
    54
    16

    ⇒ 
    (x + y)3
    =
    27
    =
    3
    3
    (x − y)382

    ⇒ 
    x + y
    =
    3
    x − y2

    By componendo and dividendo again
    ⇒ 
    x + y + x − y
    =
    3 + 2
    ⇒ 
    x
    = 5
    x + y − x + y3 − 2y

    Correct Option: C

    x3 + 3y2x
    =
    35
    y3 + 3x2y19

    By componendo and dividendo,
    x3 + 3y2x + y3 + 3x2y
    =
    35 + 19
    x3 + 3y2x − y3 − 3x2y35 − 19

    =
    54
    16

    ⇒ 
    (x + y)3
    =
    27
    =
    3
    3
    (x − y)382

    ⇒ 
    x + y
    =
    3
    x − y2

    By componendo and dividendo again
    ⇒ 
    x + y + x − y
    =
    3 + 2
    ⇒ 
    x
    = 5
    x + y − x + y3 − 2y


  1. What is
    (x² − y²)3 + (y² − z²)3 + (z² − x²)3
    (x − y)3 + (y − z)3 +(z − x)3









  1. View Hint View Answer Discuss in Forum

    x2 – y2 + y2 – z2 + z2 – x2 = 0
    ∴  (x² − y²)3 + (y² − z²)3 + (z² − x²)3
    = 3(x² − y²)(y² − z²)(z² − x²)
    [If a + b + c = 0, a3 + b3 + c3 = 3abc]
    Similarly,
    x – y + y – z + z – x = 0
    ∴  (x – y)3 + (y – z)3 + (z – x)3
    = 3 (x – y) (y – z) (z – x)

    ∴ 
    (x² − y²)3 + (y² − z²)3 + (z² − x²)3
    (x − y)3 + (y − z)3 +(z − x)3

    =
    3(x² − y²)(y² − z²)(z² − x²)
    3 (x – y) (y – z) (z – x)

    = (x + y) (y + z) (z + x)

    Correct Option: C

    x2 – y2 + y2 – z2 + z2 – x2 = 0
    ∴  (x² − y²)3 + (y² − z²)3 + (z² − x²)3
    = 3(x² − y²)(y² − z²)(z² − x²)
    [If a + b + c = 0, a3 + b3 + c3 = 3abc]
    Similarly,
    x – y + y – z + z – x = 0
    ∴  (x – y)3 + (y – z)3 + (z – x)3
    = 3 (x – y) (y – z) (z – x)

    ∴ 
    (x² − y²)3 + (y² − z²)3 + (z² − x²)3
    (x − y)3 + (y − z)3 +(z − x)3

    =
    3(x² − y²)(y² − z²)(z² − x²)
    3 (x – y) (y – z) (z – x)

    = (x + y) (y + z) (z + x)



  1. What will be the value of x3 + y3 + z3 – 3xyz when x + y + z = 9 and x2 + y2 + z2 = 31?









  1. View Hint View Answer Discuss in Forum

    x + y + z = 9
    x2 + y2 + z2 = 31
    (x + y + z)2 = x2 + y2 + z2 + 2 (xy + yz + zx)
    ⇒  81 = 31 + 2 (xy + yz + zx)
    ⇒  2 (xy + yz + zx)
    = 81 – 31
    = 50
    ⇒  xy + yz + zx = 25
    ∴  x3 + y3 + z3 – 3xyz
    = (x + y + z) (x2 + y2 + z2 – xy – yz – zx)
    = 9 (31 – 25)
    = 9 × 6 = 54

    Correct Option: C

    x + y + z = 9
    x2 + y2 + z2 = 31
    (x + y + z)2 = x2 + y2 + z2 + 2 (xy + yz + zx)
    ⇒  81 = 31 + 2 (xy + yz + zx)
    ⇒  2 (xy + yz + zx)
    = 81 – 31
    = 50
    ⇒  xy + yz + zx = 25
    ∴  x3 + y3 + z3 – 3xyz
    = (x + y + z) (x2 + y2 + z2 – xy – yz – zx)
    = 9 (31 – 25)
    = 9 × 6 = 54