Algebra


  1. The numerical value of
    (a - b)2
    +
    (b - c)2
    +
    (c - a)2
    is (a ≠ b ≠ c)
    (b - c)(c - a)(c - a)(a - b)(a - b)(b - c)










  1. View Hint View Answer Discuss in Forum

    Expression =
    (a - b)2
    +
    (b - c)2
    +
    (c - a)2
    (b - c)(c - a)(c - a)(a - b)(a - b)(b - c)

    Expression =
    (a - b)3 + (b - c)3 + (c - a)3
    (a - b)(b - c)(c - a)

    Expression =
    3(a - b)(b - c)(c - a)
    = 3
    (a - b)(b - c)(c - a)

    [Here, a – b + b – c + c – a = 0.
    If x + y + z = 0, x3 + y3 + z3 = 3xyz ]

    Correct Option: D

    Expression =
    (a - b)2
    +
    (b - c)2
    +
    (c - a)2
    (b - c)(c - a)(c - a)(a - b)(a - b)(b - c)

    Expression =
    (a - b)3 + (b - c)3 + (c - a)3
    (a - b)(b - c)(c - a)

    Expression =
    3(a - b)(b - c)(c - a)
    = 3
    (a - b)(b - c)(c - a)

    [Here, a – b + b – c + c – a = 0.
    If x + y + z = 0, x3 + y3 + z3 = 3xyz ]


  1. An example of an equality relation of two expressions in x, which is not an identity is









  1. View Hint View Answer Discuss in Forum

    According to equality relation (x + 2)2 = x2 + 4x + 4 is not an identity

    Correct Option: C

    According to equality relation (x + 2)2 = x2 + 4x + 4 is not an identity



  1. If x = 332, y = 333, z = 335, then the value of x3 + y3 + z3 – 3xyz is









  1. View Hint View Answer Discuss in Forum

    Using Rule 22,
    x = 332, y = 333, z = 335
    ∴ x + y + z = 332 + 333 + 335 = 1000

    ∴ x3 + y3 + z3 – 3xyz =
    1
    (x + y + z)[ (x - y)2 + (y - z)2 + (z - x)2 ]
    2

    ⇒ x3 + y3 + z3 – 3xyz =
    1000
    [ (332 – 333)2 + (333 – 335)2 + (335 - 332)2 ]
    2

    ⇒ x3 + y3 + z3 – 3xyz = 500 (1 + 4 + 9) = 500 × 14 = 7000

    Correct Option: B

    Using Rule 22,
    x = 332, y = 333, z = 335
    ∴ x + y + z = 332 + 333 + 335 = 1000

    ∴ x3 + y3 + z3 – 3xyz =
    1
    (x + y + z)[ (x - y)2 + (y - z)2 + (z - x)2 ]
    2

    ⇒ x3 + y3 + z3 – 3xyz =
    1000
    [ (332 – 333)2 + (333 – 335)2 + (335 - 332)2 ]
    2

    ⇒ x3 + y3 + z3 – 3xyz = 500 (1 + 4 + 9) = 500 × 14 = 7000


  1. If
    p2
    +
    q2
    = 1 , then the value of (p6 + q6) is
    q2p2










  1. View Hint View Answer Discuss in Forum

    p2
    +
    q2
    = 1
    q2p2

    p4 + q4
    = 1
    p2q2

    ⇒ p4 + q4 = p2q2
    ⇒ p4 + q4 - p2q2 = 0 ...... (i)
    ∴ p6 + q6 = (p2)3 + (q2)3
    p6 + q6 = (p2 + q2)(p4 + q4 - p2q2)
    [ ∴ a3 + b3 = (a + b)(a2 + b2 - ab) ]
    p6 + q6 = (p2 + q2) × 0 = 0

    Correct Option: A

    p2
    +
    q2
    = 1
    q2p2

    p4 + q4
    = 1
    p2q2

    ⇒ p4 + q4 = p2q2
    ⇒ p4 + q4 - p2q2 = 0 ...... (i)
    ∴ p6 + q6 = (p2)3 + (q2)3
    p6 + q6 = (p2 + q2)(p4 + q4 - p2q2)
    [ ∴ a3 + b3 = (a + b)(a2 + b2 - ab) ]
    p6 + q6 = (p2 + q2) × 0 = 0



  1. If a + b – c = 0 then the value of 2b2c2 + 2c2a2 + 2a2b2 – a4 – b4 – c4









  1. View Hint View Answer Discuss in Forum

    Expression = 2b2c2 + 2c2a2 + 2a2b2 - a4 - b4 - c4
    Expression = 4b2c2 - (2b2c2 - 2c2a2 - 2a2b2 + a4 + b4 + c4)
    Expression = (2bc)2 - (a2 - b2 - c2)2
    Expression = (2bc + a2 - b2 - c2)(2bc - a2 + b2 + c2)
    Expression = {a2 - (b2 + c2 - 2bc){(b2 + c2 + 2bc) - a2}
    Expression = { a2 - (b - c)2 }{ (b + c)2 - a2 }
    Expression = (a – b + c) (a + b – c)(a + b + c) (b + c – a)
    If a + b – c = 0,
    ∴ Expression = 0

    Correct Option: B

    Expression = 2b2c2 + 2c2a2 + 2a2b2 - a4 - b4 - c4
    Expression = 4b2c2 - (2b2c2 - 2c2a2 - 2a2b2 + a4 + b4 + c4)
    Expression = (2bc)2 - (a2 - b2 - c2)2
    Expression = (2bc + a2 - b2 - c2)(2bc - a2 + b2 + c2)
    Expression = {a2 - (b2 + c2 - 2bc){(b2 + c2 + 2bc) - a2}
    Expression = { a2 - (b - c)2 }{ (b + c)2 - a2 }
    Expression = (a – b + c) (a + b – c)(a + b + c) (b + c – a)
    If a + b – c = 0,
    ∴ Expression = 0