Algebra


  1. If x is a rational number and
    (x + 1)3 - (x - 1)3
    = 2 , then the sum of numerator and denominator of x is
    (x + 1)2 - (x - 1)2










  1. View Hint View Answer Discuss in Forum

    ( x + 1 )3 - ( x - 1 )3
    = 2
    ( x + 1 )2 - ( x - 1 )2

    ( x3 + 3x2 + 3x + 1 ) - ( x3 - 3x2 + 3x - 1 )
    = 2
    ( x2 + 2x + 1 ) - ( x2 - 2x + 1 )

    x3 + 3x2 + 3x + 1 - x3 + 3x2 - 3x + 1
    = 2
    x2 + 2x + 1 - x2 + 2x - 1

    6x2 + 2
    = 2
    4x

    3x2 + 1
    = 1 ⇒ 3x2 + 1 = 4x
    4x

    ⇒ 3x2 - 4x + 1 = 0
    ⇒ 3x2 - 3x - x + 1 = 0
    ⇒ 3x(x – 1) – 1(x – 1) = 0
    ⇒ (3x – 1)(x – 1) = 0
    ⇒ 3x – 1 = 0, or, x – 1 = 0
    ⇒ x =
    1
    or 1
    3

    Hence, sum of the numerator and denominator = 1 + 3 = 4 or, 1 + 1 = 2

    Correct Option: B

    ( x + 1 )3 - ( x - 1 )3
    = 2
    ( x + 1 )2 - ( x - 1 )2

    ( x3 + 3x2 + 3x + 1 ) - ( x3 - 3x2 + 3x - 1 )
    = 2
    ( x2 + 2x + 1 ) - ( x2 - 2x + 1 )

    x3 + 3x2 + 3x + 1 - x3 + 3x2 - 3x + 1
    = 2
    x2 + 2x + 1 - x2 + 2x - 1

    6x2 + 2
    = 2
    4x

    3x2 + 1
    = 1 ⇒ 3x2 + 1 = 4x
    4x

    ⇒ 3x2 - 4x + 1 = 0
    ⇒ 3x2 - 3x - x + 1 = 0
    ⇒ 3x(x – 1) – 1(x – 1) = 0
    ⇒ (3x – 1)(x – 1) = 0
    ⇒ 3x – 1 = 0, or, x – 1 = 0
    ⇒ x =
    1
    or 1
    3

    Hence, sum of the numerator and denominator = 1 + 3 = 4 or, 1 + 1 = 2


  1. If x = √5 + 2 ,then the value
    2x2 - 3x - 2
    is equal to
    3x2 - 4x - 3










  1. View Hint View Answer Discuss in Forum

    Expression =
    2x2 - 3x - 2
    3x2 - 4x - 3

    Expression =
    2(√5 + 2)2 - 3(√5 + 2) - 2
    3(√5 + 2)2 - 4(√5 + 2) - 3

    Expression =
    2(5 + 4 + 4√5) - 3(√5 + 2) - 2
    3(5 + 4 + 4√5) - 4(√5 + 2) - 3

    Expression =
    18 + 8√5 - 3√5 - 6 - 2
    27 + 12√5 - 4√5 - 8 - 3

    Expression =
    10 + 5√5
    16 + 8√5

    Expression =
    5(2 + √5)
    8(2 + √5)

    Expression =
    5
    = 0.625
    8

    Correct Option: C

    Expression =
    2x2 - 3x - 2
    3x2 - 4x - 3

    Expression =
    2(√5 + 2)2 - 3(√5 + 2) - 2
    3(√5 + 2)2 - 4(√5 + 2) - 3

    Expression =
    2(5 + 4 + 4√5) - 3(√5 + 2) - 2
    3(5 + 4 + 4√5) - 4(√5 + 2) - 3

    Expression =
    18 + 8√5 - 3√5 - 6 - 2
    27 + 12√5 - 4√5 - 8 - 3

    Expression =
    10 + 5√5
    16 + 8√5

    Expression =
    5(2 + √5)
    8(2 + √5)

    Expression =
    5
    = 0.625
    8



  1. If a = 2.234, b = 3.121 and c = –5.355, then the value of a3 + b3 + c3 - 3abc is









  1. View Hint View Answer Discuss in Forum

    Using Rule 21,
    a = 2.234, b = 3.121 and c = -5.355
    a + b + c = 2.234 + 3.121 – 5.355 = 0
    ∴ a3 + b3 + c3 – 3abc = 0

    Correct Option: B

    Using Rule 21,
    a = 2.234, b = 3.121 and c = -5.355
    a + b + c = 2.234 + 3.121 – 5.355 = 0
    ∴ a3 + b3 + c3 – 3abc = 0


  1. If x3 +
    3
    = 4( a3 + b3 ) and 3x +
    1
    = 4( a3 + b3 ) , then ( a2 - b2 ) is equal to
    xx3










  1. View Hint View Answer Discuss in Forum

    x3 +
    3
    = 4( a3 + b3 )
    x

    3x +
    1
    = 4( a3 - b3 )
    x3

    On adding,
    x3 + 3x +
    3
    +
    1
    = 8a3
    xx3

    x +
    1
    3 = (2a)3
    x

    ⇒ x +
    1
    = 2a
    x

    ⇒ a =
    1
    x +
    1
    2x

    Similarly,
    x3 +
    3
    - 3x -
    1
    = 8b3
    xx3

    x -
    1
    3 = (2b)3
    x

    ⇒ x -
    1
    = 2b
    x

    ⇒ b =
    1
    x -
    1
    2x

    ∴ a2 - b2 =
    1
    x +
    1
    2 - x -
    1
    2
    4xx

    a2 - b2 =
    1
    × 4 = 1
    4

    Correct Option: C

    x3 +
    3
    = 4( a3 + b3 )
    x

    3x +
    1
    = 4( a3 - b3 )
    x3

    On adding,
    x3 + 3x +
    3
    +
    1
    = 8a3
    xx3

    x +
    1
    3 = (2a)3
    x

    ⇒ x +
    1
    = 2a
    x

    ⇒ a =
    1
    x +
    1
    2x

    Similarly,
    x3 +
    3
    - 3x -
    1
    = 8b3
    xx3

    x -
    1
    3 = (2b)3
    x

    ⇒ x -
    1
    = 2b
    x

    ⇒ b =
    1
    x -
    1
    2x

    ∴ a2 - b2 =
    1
    x +
    1
    2 - x -
    1
    2
    4xx

    a2 - b2 =
    1
    × 4 = 1
    4



  1. If 3( a2 + b2 + c2 ) = (a + b + c)2 , then the relation between a, b and c is









  1. View Hint View Answer Discuss in Forum

    3( a2 + b2 + c2 ) = (a + b + c)2
    ⇒ 3a2 + 3b2 + 3c2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
    ⇒ 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0
    ⇒ a2 + b2 - 2ab + b2 + c2 - 2bc + c2 + a2 - 2ca = 0
    ⇒ (a - b)2 + (b - c)2 + (c - a)2 = 0
    ⇒ a – b = 0 ⇒ a = b
    If x2 + y2 + z2 = 0 , x = 0, y = 0, z = 0]
    b – c = 0 ⇒ b = c
    c – a = 0 ⇒ c = a
    ∴ a = b = c

    Correct Option: A

    3( a2 + b2 + c2 ) = (a + b + c)2
    ⇒ 3a2 + 3b2 + 3c2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
    ⇒ 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0
    ⇒ a2 + b2 - 2ab + b2 + c2 - 2bc + c2 + a2 - 2ca = 0
    ⇒ (a - b)2 + (b - c)2 + (c - a)2 = 0
    ⇒ a – b = 0 ⇒ a = b
    If x2 + y2 + z2 = 0 , x = 0, y = 0, z = 0]
    b – c = 0 ⇒ b = c
    c – a = 0 ⇒ c = a
    ∴ a = b = c