Algebra


  1. For a > b, if a + b = 5 and ab = 6, then the value of (a2 – b2) is









  1. View Hint View Answer Discuss in Forum

    (a – b)2 = (a + b)2 – 4ab
    = 52 – 4 × 6 = 1
    ⇒  a – b = 1
    ∴  (a2 – b2)
    = (a + b) (a – b) = 5

    Correct Option: C

    (a – b)2 = (a + b)2 – 4ab
    = 52 – 4 × 6 = 1
    ⇒  a – b = 1
    ∴  (a2 – b2)
    = (a + b) (a – b) = 5


  1. If x = 5 + 2√6, then the value of x +
    1
    is,
    x









  1. View Hint View Answer Discuss in Forum

    x = 5 + 2√6

    ∴ 
    1
    =
    1
    =
    5 − 2√6
    x5 + 2√6(5 + 2√6)(5 − 2√6)

    =
    5 − 2√6
    = 5 − 2√6
    25 − 24

    ∴  x +
    1
    2 = x +
    1
    + 2
    xx

    = 5 + 2√6 + 5 – 2√6 + 2 = 12
    ∴  x +
    1
    = √12 = 2√3
    x

    Correct Option: C

    x = 5 + 2√6

    ∴ 
    1
    =
    1
    =
    5 − 2√6
    x5 + 2√6(5 + 2√6)(5 − 2√6)

    =
    5 − 2√6
    = 5 − 2√6
    25 − 24

    ∴  x +
    1
    2 = x +
    1
    + 2
    xx

    = 5 + 2√6 + 5 – 2√6 + 2 = 12
    ∴  x +
    1
    = √12 = 2√3
    x



  1. If x −
    1
    = 4 , then x +
    1
    is equal to
    xx









  1. View Hint View Answer Discuss in Forum

    x −
    1
    = 4   (Given)
    x

    ∴ x +
    1
    2 = x −
    1
    2 + 4
    xx

    = (4)2 + 4 = 20
    ⇒  x +
    1
    = √20 = 2√5
    x

    Correct Option: B

    x −
    1
    = 4   (Given)
    x

    ∴ x +
    1
    2 = x −
    1
    2 + 4
    xx

    = (4)2 + 4 = 20
    ⇒  x +
    1
    = √20 = 2√5
    x


  1. If √x = √3 − √5 , then the value of x2 – 16x + 6 is









  1. View Hint View Answer Discuss in Forum

    x = √3 - √5
    On squaring both sides,
    x = 3 + 5 - 2√15
    ⇒ x - 8 = - 2√15
    Squaring again,
    x² – 16x + 64 = 60
    ⇒ x² – 16x + 4 = 0
    ∴ x² – 16x + 6 = 2

    Correct Option: C

    x = √3 - √5
    On squaring both sides,
    x = 3 + 5 - 2√15
    ⇒ x - 8 = - 2√15
    Squaring again,
    x² – 16x + 64 = 60
    ⇒ x² – 16x + 4 = 0
    ∴ x² – 16x + 6 = 2



  1. The minimum value of (x – 2) (x – 9) is









  1. View Hint View Answer Discuss in Forum

    Expression = (x – 2) (x – 9)
    = x² – 11x + 18 = ax² + bx + c

    Minimum value =
    4ac - b²
    4a

    =
    4 × 1 × 18 - 121
    =
    - 49
    44

    Correct Option: D

    Expression = (x – 2) (x – 9)
    = x² – 11x + 18 = ax² + bx + c

    Minimum value =
    4ac - b²
    4a

    =
    4 × 1 × 18 - 121
    =
    - 49
    44