Algebra


  1. If   x2 +
    1
    = 2 , then the value of x −
    1
    is
    x2x









  1. View Hint View Answer Discuss in Forum

    ⇒  x2 +
    1
    = 2
    x2

    ⇒ x −
    1
    2 + 2x ×
    1
    = 2
    xx

    ⇒ x −
    1
    2 = 2 – 2 = 0
    x

    ⇒  x −
    1
    = 0
    x

    Correct Option: B

    ⇒  x2 +
    1
    = 2
    x2

    ⇒ x −
    1
    2 + 2x ×
    1
    = 2
    xx

    ⇒ x −
    1
    2 = 2 – 2 = 0
    x

    ⇒  x −
    1
    = 0
    x


  1. If   x +
    1
    = 4, then the value 9x2 +
    1
    is
    9x9x2









  1. View Hint View Answer Discuss in Forum

    x +
    1
    = 4
    9x

    On multiplying by 3,
    3x +
    1
    = 12
    3x

    On squaring both sides,
    3x +
    1
    2 = (12)2
    3x

    ⇒  9x2 +
    1
    + 2 × 3x ×
    1
    9x23x

    = 144
    ⇒  9x2 +
    1
    = 144 – 2 = 142
    9x2

    Correct Option: B

    x +
    1
    = 4
    9x

    On multiplying by 3,
    3x +
    1
    = 12
    3x

    On squaring both sides,
    3x +
    1
    2 = (12)2
    3x

    ⇒  9x2 +
    1
    + 2 × 3x ×
    1
    9x23x

    = 144
    ⇒  9x2 +
    1
    = 144 – 2 = 142
    9x2



  1. If   x =
    6pq
    , then the value of
    x + 3p
    +
    x + 3q
    is
    p + qx − 3px − 3q









  1. View Hint View Answer Discuss in Forum

    x =
    6pq
    =
    3p × 2q
    p + qp + q

    ⇒ 
    x
    =
    2q
    3pp + q

    ⇒ 
    x + 3p
    =
    2q + p + q
    x − 3p2q − p − q

    (By componendo and dividendo)
    ⇒ 
    x + 3p
    =
    3q + p
      .....(i)
    x − 3pq − p

    Again,   x =
    6pq
    =
    2p × 3q
    p + qp + q

    ⇒ 
    x
    =
    2p
    3qp + q

    ⇒ 
    x + 3q
    =
    2p + p + q
    x − 3q2p − p − q

    (By componendo and dividendo)
    ⇒ 
    x + 3q
    =
    3p + q
      .....(ii)
    x − 3qp − q

    ∴ 
    x + 3p
    +
    x + 3q
    =
    3q + p
    +
    3p + q
    x − 3px − 3qq − pp − q

    =
    3q + p
    3p + q
    q − pq − p

    =
    3q + p − 3p − q
    =
    2q − 2p
    q − pq − p

    =
    2(q − p)
    = 2
    q − p

    Correct Option: C

    x =
    6pq
    =
    3p × 2q
    p + qp + q

    ⇒ 
    x
    =
    2q
    3pp + q

    ⇒ 
    x + 3p
    =
    2q + p + q
    x − 3p2q − p − q

    (By componendo and dividendo)
    ⇒ 
    x + 3p
    =
    3q + p
      .....(i)
    x − 3pq − p

    Again,   x =
    6pq
    =
    2p × 3q
    p + qp + q

    ⇒ 
    x
    =
    2p
    3qp + q

    ⇒ 
    x + 3q
    =
    2p + p + q
    x − 3q2p − p − q

    (By componendo and dividendo)
    ⇒ 
    x + 3q
    =
    3p + q
      .....(ii)
    x − 3qp − q

    ∴ 
    x + 3p
    +
    x + 3q
    =
    3q + p
    +
    3p + q
    x − 3px − 3qq − pp − q

    =
    3q + p
    3p + q
    q − pq − p

    =
    3q + p − 3p − q
    =
    2q − 2p
    q − pq − p

    =
    2(q − p)
    = 2
    q − p


  1. If   a +
    1
    = 4, then the value
    of (a − 2)2 +
    1
    2 is :
    a − 2a − 2









  1. View Hint View Answer Discuss in Forum

    a +
    1
    = 4
    a − 2

    ⇒  (a − 2) +
    1
    = 4 − 2 = 2
    (a − 2)

    On squaring both sides,
    (a − 2) +
    1
    2 = 4
    (a − 2)

    ⇒  (a − 2)2 +
    1
    + 2 × (a − 2) ×
    1
    = 4
    (a − 2)2(a − 2)

    ⇒  (a − 2)2 +
    1
    = 4 − 2 = 2
    (a − 2)2

    Correct Option: B

    a +
    1
    = 4
    a − 2

    ⇒  (a − 2) +
    1
    = 4 − 2 = 2
    (a − 2)

    On squaring both sides,
    (a − 2) +
    1
    2 = 4
    (a − 2)

    ⇒  (a − 2)2 +
    1
    + 2 × (a − 2) ×
    1
    = 4
    (a − 2)2(a − 2)

    ⇒  (a − 2)2 +
    1
    = 4 − 2 = 2
    (a − 2)2



  1. If   ab = 21 and
    (a + b)2
    =
    25
    then the value of a2 + b2 + 3ab is
    (a − b)24









  1. View Hint View Answer Discuss in Forum

    (a + b)2
    =
    25
    (a − b)24

    By componendo and dividendo,
    (a + b)2 + (a − b)2
    =
    25 + 4
    (a + b)2 − (a − b)225 − 4

    ⇒ 
    2(a2 + b2)
    =
    29
    4ab21

    ⇒ 
    a2 + b2
    =
    29
    2 × 2121

    ⇒  a2 + b2 = 2 × 29 = 58
    ∴  a2 + b2 + 3ab = 58 + 3 × 21
    = 58 + 63 = 121

    Correct Option: B

    (a + b)2
    =
    25
    (a − b)24

    By componendo and dividendo,
    (a + b)2 + (a − b)2
    =
    25 + 4
    (a + b)2 − (a − b)225 − 4

    ⇒ 
    2(a2 + b2)
    =
    29
    4ab21

    ⇒ 
    a2 + b2
    =
    29
    2 × 2121

    ⇒  a2 + b2 = 2 × 29 = 58
    ∴  a2 + b2 + 3ab = 58 + 3 × 21
    = 58 + 63 = 121