Home » Aptitude » Algebra » Question
  1. If   ab = 21 and
    (a + b)2
    =
    25
    then the value of a2 + b2 + 3ab is
    (a − b)24
    1. 115
    2. 121
    3. 125
    4. 127
Correct Option: B

(a + b)2
=
25
(a − b)24

By componendo and dividendo,
(a + b)2 + (a − b)2
=
25 + 4
(a + b)2 − (a − b)225 − 4

⇒ 
2(a2 + b2)
=
29
4ab21

⇒ 
a2 + b2
=
29
2 × 2121

⇒  a2 + b2 = 2 × 29 = 58
∴  a2 + b2 + 3ab = 58 + 3 × 21
= 58 + 63 = 121



Your comments will be displayed only after manual approval.