Algebra


  1. What is the value of m in the quadratic equation x2 + mx + 24 = 0 if one of its roots is (3/2)









  1. View Hint View Answer Discuss in Forum

    Putting x =
    3
    in x2 + mx + 24 = 0
    2

    3
    2 + m ×
    3
    + 24 = 0
    22

    ⇒ 
    9
    +
    3m
    + 24 = 0
    42

    ⇒ 
    3m
    = −24 +
    9
    24

    ⇒ 
    3m
    = −
    96 + 9
    24

    ⇒ 
    3m
    = −
    105
    24

    ⇒  m = −
    105
    ×
    2
    43

    35
    2

    Correct Option: D

    Putting x =
    3
    in x2 + mx + 24 = 0
    2

    3
    2 + m ×
    3
    + 24 = 0
    22

    ⇒ 
    9
    +
    3m
    + 24 = 0
    42

    ⇒ 
    3m
    = −24 +
    9
    24

    ⇒ 
    3m
    = −
    96 + 9
    24

    ⇒ 
    3m
    = −
    105
    24

    ⇒  m = −
    105
    ×
    2
    43

    35
    2


  1. If   a +
    1
    = 1 and b +
    1
    = 1 then c +
    1
    is equal to :
    bca









  1. View Hint View Answer Discuss in Forum

    a +
    1
    = 1 ⇒ a =
    1
    ; b = 2
    b2

    b +
    1
    = 1 ⇒ b = 2, c = –1
    c

    ∴  c +
    1
    = –1 + 2 = 1
    a

    Correct Option: C

    a +
    1
    = 1 ⇒ a =
    1
    ; b = 2
    b2

    b +
    1
    = 1 ⇒ b = 2, c = –1
    c

    ∴  c +
    1
    = –1 + 2 = 1
    a



  1. If   for non-zero x, x2 – 4x –1 = 0, the value of x2 +
    1
      is :
    x2









  1. View Hint View Answer Discuss in Forum

    x2 – 4x –1 = 0
    ⇒  x2 – 1 = 4x

    ⇒ 
    x2 – 1
    =
    4x
    xx

    ⇒  x –
    1
    = 4
    x

    On squaring both sides,
    x −
    1
    2 = 16
    x

    ⇒  x2 +
    1
    − 2 = 16
    x2

    ⇒  x2 +
    1
    = 16 + 2 = 18
    x2

    Correct Option: C

    x2 – 4x –1 = 0
    ⇒  x2 – 1 = 4x

    ⇒ 
    x2 – 1
    =
    4x
    xx

    ⇒  x –
    1
    = 4
    x

    On squaring both sides,
    x −
    1
    2 = 16
    x

    ⇒  x2 +
    1
    − 2 = 16
    x2

    ⇒  x2 +
    1
    = 16 + 2 = 18
    x2


  1. If a2 + b2 + c2 = 2 (a + b + c) – 3, then the value of a + b + c is :









  1. View Hint View Answer Discuss in Forum

    a2 + b2 + c2 = 2 (a – b – c) – 3
    ⇒  a2 + b2 + c2 – 2a + 2b + 2c + 3 = 0
    ⇒  a2 – 2a + 1 + b2 + 2b + 1 + c2 + 2c + 1 = 0
    ⇒  (a – 1)2 + (b + 1)2 + (c + 1)2 = 0
    ∴  a – 1 = 0 ⇒ a = 1
    b + 1 = 0 ⇒ b = –1
    c + 1 = 0 ⇒ c = –1
    [If x2 + y2 + z2 = 0 ⇒ x = 0, y = 0, z = 0]
    ∴  a + b + c = 1 – 1 – 1 = –1

    Correct Option: B

    a2 + b2 + c2 = 2 (a – b – c) – 3
    ⇒  a2 + b2 + c2 – 2a + 2b + 2c + 3 = 0
    ⇒  a2 – 2a + 1 + b2 + 2b + 1 + c2 + 2c + 1 = 0
    ⇒  (a – 1)2 + (b + 1)2 + (c + 1)2 = 0
    ∴  a – 1 = 0 ⇒ a = 1
    b + 1 = 0 ⇒ b = –1
    c + 1 = 0 ⇒ c = –1
    [If x2 + y2 + z2 = 0 ⇒ x = 0, y = 0, z = 0]
    ∴  a + b + c = 1 – 1 – 1 = –1



  1. If x + y = 4, x2 + y2 = 14 and x > y, then the correct value of x and y is :









  1. View Hint View Answer Discuss in Forum

    x + y = 4         --- (i)
    x2 + y2 = 14         --- (ii)
    ∴  (x + y)2 = x2 + y2 + 2xy
    ⇒  16 = 14 + 2xy
    ⇒  2xy = 16 – 14 = 2
    ⇒  xy = 1         --- (iii)
    ∴  (x – y)2 = (x + y)2 – 4xy
    = (4)2 – 4 = 16 – 4 = 12
    ⇒  x – y = √12 = 2 √3         --- (iv)
    ∴  On adding equations (i) and (iv)

    x + y = 4
    x − y = 2√3
    ____________
    2x = 4 + 2√3
    ⇒ x = 2 + √3

    From equation (i),
    2 + √3 + y = 4
    ⇒  y = 4 – 2 – √3 = 2 – √3

    Correct Option: A

    x + y = 4         --- (i)
    x2 + y2 = 14         --- (ii)
    ∴  (x + y)2 = x2 + y2 + 2xy
    ⇒  16 = 14 + 2xy
    ⇒  2xy = 16 – 14 = 2
    ⇒  xy = 1         --- (iii)
    ∴  (x – y)2 = (x + y)2 – 4xy
    = (4)2 – 4 = 16 – 4 = 12
    ⇒  x – y = √12 = 2 √3         --- (iv)
    ∴  On adding equations (i) and (iv)

    x + y = 4
    x − y = 2√3
    ____________
    2x = 4 + 2√3
    ⇒ x = 2 + √3

    From equation (i),
    2 + √3 + y = 4
    ⇒  y = 4 – 2 – √3 = 2 – √3