-
If x + y = 4, x2 + y2 = 14 and x > y, then the correct value of x and y is :
-
- 2 + √3 , 2 – √3
- 2 – √2 , √3
- 3, 1
- 2 + √3 , 2√2
Correct Option: A
x + y = 4 --- (i)
x2 + y2 = 14 --- (ii)
∴ (x + y)2 = x2 + y2 + 2xy
⇒ 16 = 14 + 2xy
⇒ 2xy = 16 – 14 = 2
⇒ xy = 1 --- (iii)
∴ (x – y)2 = (x + y)2 – 4xy
= (4)2 – 4 = 16 – 4 = 12
⇒ x – y = √12 = 2 √3 --- (iv)
∴ On adding equations (i) and (iv)
x + y = 4 |
x − y = 2√3 |
____________ |
2x = 4 + 2√3 |
⇒ x = 2 + √3 |
From equation (i),
2 + √3 + y = 4
⇒ y = 4 – 2 – √3 = 2 – √3