Algebra
-
If x = √3 + √2 , then the value of x3 - 1 is : x3
-
View Hint View Answer Discuss in Forum
x = √3 + √2
∴ 1 = 1 x √3 + √2 = √3 - √2 ( √3 + √2 )( √3 - √2 )
= √3 - √2∴ x + 1 = √3 + √2 + √3 + √2 = 2√2 x
Cubing both sides,⇒ x - 1 3 = 16√2 x ⇒ x3 - 1 - 3 x - 1 = 16√2 x3 x ⇒ x3 - 1 - 3 × 2√2 = 16√2 x3 ⇒ x3 - 1 = 16√2 + 6√2 = 22√2 x3
Correct Option: C
x = √3 + √2
∴ 1 = 1 x √3 + √2 = √3 - √2 ( √3 + √2 )( √3 - √2 )
= √3 - √2∴ x + 1 = √3 + √2 + √3 + √2 = 2√2 x
Cubing both sides,⇒ x - 1 3 = 16√2 x ⇒ x3 - 1 - 3 x - 1 = 16√2 x3 x ⇒ x3 - 1 - 3 × 2√2 = 16√2 x3 ⇒ x3 - 1 = 16√2 + 6√2 = 22√2 x3
-
If x2 + 1 = 2x , then the value of [ x2 + ( 1 / x2 ) ] is x2 - 3x + 1
-
View Hint View Answer Discuss in Forum
x2 + 1 = 2x (Given)
⇒ x + 1 = 2 ...(i) x
Expression = x4 + 1 x2 x2 - 3x + 1 = x6 + 1 x2 x2 - 3x + 1 Expression = x6 + 1 ( x2 + 1 - 3x ).x2 Expression = x6 + 1 = x6 + 1 ( 2x - 3x ).x2 -x3 Expression = - x6 + 1 = - x6 + 1 x3 x3 x3 = - x3 + 1 x3 Expression = - x + 1 3 - 3 x + 1 x x
= – [23 – 3 × 2]
= – 2
Correct Option: D
x2 + 1 = 2x (Given)
⇒ x + 1 = 2 ...(i) x
Expression = x4 + 1 x2 x2 - 3x + 1 = x6 + 1 x2 x2 - 3x + 1 Expression = x6 + 1 ( x2 + 1 - 3x ).x2 Expression = x6 + 1 = x6 + 1 ( 2x - 3x ).x2 -x3 Expression = - x6 + 1 = - x6 + 1 x3 x3 x3 = - x3 + 1 x3 Expression = - x + 1 3 - 3 x + 1 x x
= – [23 – 3 × 2]
= – 2
-
If x2 + 1 = 2x , then the value of [ x2 + ( 1 / x2 ) ] is x2 - 3x + 1
-
View Hint View Answer Discuss in Forum
x2 + 1 = 2x (Given)
⇒ x + 1 = 2 ...(i) x
Expression = x4 + 1 x2 x2 - 3x + 1 = x6 + 1 x2 x2 - 3x + 1 Expression = x6 + 1 ( x2 + 1 - 3x ).x2 Expression = x6 + 1 = x6 + 1 ( 2x - 3x ).x2 -x3 Expression = - x6 + 1 = - x6 + 1 x3 x3 x3 = - x3 + 1 x3 Expression = - x + 1 3 - 3 x + 1 x x
= – [23 – 3 × 2]
= – 2
Correct Option: D
x2 + 1 = 2x (Given)
⇒ x + 1 = 2 ...(i) x
Expression = x4 + 1 x2 x2 - 3x + 1 = x6 + 1 x2 x2 - 3x + 1 Expression = x6 + 1 ( x2 + 1 - 3x ).x2 Expression = x6 + 1 = x6 + 1 ( 2x - 3x ).x2 -x3 Expression = - x6 + 1 = - x6 + 1 x3 x3 x3 = - x3 + 1 x3 Expression = - x + 1 3 - 3 x + 1 x x
= – [23 – 3 × 2]
= – 2
-
If x2 + 1 = 2x , then the value of [ x2 + ( 1 / x2 ) ] is x2 - 3x + 1
-
View Hint View Answer Discuss in Forum
x2 + 1 = 2x (Given)
⇒ x + 1 = 2 ...(i) x
Expression = x4 + 1 x2 x2 - 3x + 1 = x6 + 1 x2 x2 - 3x + 1 Expression = x6 + 1 ( x2 + 1 - 3x ).x2 Expression = x6 + 1 = x6 + 1 ( 2x - 3x ).x2 -x3 Expression = - x6 + 1 = - x6 + 1 x3 x3 x3 = - x3 + 1 x3 Expression = - x + 1 3 - 3 x + 1 x x
= – [23 – 3 × 2]
= – 2
Correct Option: D
x2 + 1 = 2x (Given)
⇒ x + 1 = 2 ...(i) x
Expression = x4 + 1 x2 x2 - 3x + 1 = x6 + 1 x2 x2 - 3x + 1 Expression = x6 + 1 ( x2 + 1 - 3x ).x2 Expression = x6 + 1 = x6 + 1 ( 2x - 3x ).x2 -x3 Expression = - x6 + 1 = - x6 + 1 x3 x3 x3 = - x3 + 1 x3 Expression = - x + 1 3 - 3 x + 1 x x
= – [23 – 3 × 2]
= – 2
-
If x = 1 – √2 , the value of x - 1 3 is : x
-
View Hint View Answer Discuss in Forum
x = 1 – √2
On multiplying and divided by ( 1 + √2 )∴ 1 = 1 × ( 1 + √2 ) x ( 1 – √2 )( 1 + √2 )
= 1 – √2∴ x - 1 3 = ( 1 – √2 + 1 + √2 )3 x
= 23 = 8Correct Option: B
x = 1 – √2
On multiplying and divided by ( 1 + √2 )∴ 1 = 1 × ( 1 + √2 ) x ( 1 – √2 )( 1 + √2 )
= 1 – √2∴ x - 1 3 = ( 1 – √2 + 1 + √2 )3 x
= 23 = 8