Algebra


  1. If x = √3 + √2 , then the value of x3 -
    1
    is :
    x3










  1. View Hint View Answer Discuss in Forum

    x = √3 + √2

    1
    =
    1
    x3 + √2

    =
    3 - √2

    ( √3 + √2 )( √3 - √2 )

    = √3 - √2
    ∴ x +
    1
    = √3 + √2 + √3 + √2 = 2√2
    x

    Cubing both sides,
    x -
    1
    3 = 16√2
    x

    ⇒ x3 -
    1
    - 3x -
    1
    = 16√2
    x3x

    ⇒ x3 -
    1
    - 3 × 2√2 = 16√2
    x3

    ⇒ x3 -
    1
    = 16√2 + 6√2 = 22√2
    x3

    Correct Option: C

    x = √3 + √2

    1
    =
    1
    x3 + √2

    =
    3 - √2

    ( √3 + √2 )( √3 - √2 )

    = √3 - √2
    ∴ x +
    1
    = √3 + √2 + √3 + √2 = 2√2
    x

    Cubing both sides,
    x -
    1
    3 = 16√2
    x

    ⇒ x3 -
    1
    - 3x -
    1
    = 16√2
    x3x

    ⇒ x3 -
    1
    - 3 × 2√2 = 16√2
    x3

    ⇒ x3 -
    1
    = 16√2 + 6√2 = 22√2
    x3


  1. If x2 + 1 = 2x , then the value of
    [ x2 + ( 1 / x2 ) ]
    is
    x2 - 3x + 1










  1. View Hint View Answer Discuss in Forum

    x2 + 1 = 2x (Given)

    ⇒ x +
    1
    = 2 ...(i)
    x

    Expression =      x4 +
    1
    x2
    x2 - 3x + 1

    =
    x6 + 1
    x2
    x2 - 3x + 1

    Expression =
    x6 + 1
    ( x2 + 1 - 3x ).x2

    Expression =
    x6 + 1
    =
    x6 + 1
    ( 2x - 3x ).x2-x3

    Expression = -
    x6 + 1
    = -
    x6
    +
    1
    x3x3x3

    = -x3 +
    1
    x3

    Expression = - x +
    1
    3 - 3 x +
    1
    xx

    = – [23 – 3 × 2]
    = – 2

    Correct Option: D

    x2 + 1 = 2x (Given)

    ⇒ x +
    1
    = 2 ...(i)
    x

    Expression =      x4 +
    1
    x2
    x2 - 3x + 1

    =
    x6 + 1
    x2
    x2 - 3x + 1

    Expression =
    x6 + 1
    ( x2 + 1 - 3x ).x2

    Expression =
    x6 + 1
    =
    x6 + 1
    ( 2x - 3x ).x2-x3

    Expression = -
    x6 + 1
    = -
    x6
    +
    1
    x3x3x3

    = -x3 +
    1
    x3

    Expression = - x +
    1
    3 - 3 x +
    1
    xx

    = – [23 – 3 × 2]
    = – 2



  1. If x2 + 1 = 2x , then the value of
    [ x2 + ( 1 / x2 ) ]
    is
    x2 - 3x + 1










  1. View Hint View Answer Discuss in Forum

    x2 + 1 = 2x (Given)

    ⇒ x +
    1
    = 2 ...(i)
    x

    Expression =      x4 +
    1
    x2
    x2 - 3x + 1

    =
    x6 + 1
    x2
    x2 - 3x + 1

    Expression =
    x6 + 1
    ( x2 + 1 - 3x ).x2

    Expression =
    x6 + 1
    =
    x6 + 1
    ( 2x - 3x ).x2-x3

    Expression = -
    x6 + 1
    = -
    x6
    +
    1
    x3x3x3

    = -x3 +
    1
    x3

    Expression = - x +
    1
    3 - 3 x +
    1
    xx

    = – [23 – 3 × 2]
    = – 2

    Correct Option: D

    x2 + 1 = 2x (Given)

    ⇒ x +
    1
    = 2 ...(i)
    x

    Expression =      x4 +
    1
    x2
    x2 - 3x + 1

    =
    x6 + 1
    x2
    x2 - 3x + 1

    Expression =
    x6 + 1
    ( x2 + 1 - 3x ).x2

    Expression =
    x6 + 1
    =
    x6 + 1
    ( 2x - 3x ).x2-x3

    Expression = -
    x6 + 1
    = -
    x6
    +
    1
    x3x3x3

    = -x3 +
    1
    x3

    Expression = - x +
    1
    3 - 3 x +
    1
    xx

    = – [23 – 3 × 2]
    = – 2


  1. If x2 + 1 = 2x , then the value of
    [ x2 + ( 1 / x2 ) ]
    is
    x2 - 3x + 1










  1. View Hint View Answer Discuss in Forum

    x2 + 1 = 2x (Given)

    ⇒ x +
    1
    = 2 ...(i)
    x

    Expression =      x4 +
    1
    x2
    x2 - 3x + 1

    =
    x6 + 1
    x2
    x2 - 3x + 1

    Expression =
    x6 + 1
    ( x2 + 1 - 3x ).x2

    Expression =
    x6 + 1
    =
    x6 + 1
    ( 2x - 3x ).x2-x3

    Expression = -
    x6 + 1
    = -
    x6
    +
    1
    x3x3x3

    = -x3 +
    1
    x3

    Expression = - x +
    1
    3 - 3 x +
    1
    xx

    = – [23 – 3 × 2]
    = – 2

    Correct Option: D

    x2 + 1 = 2x (Given)

    ⇒ x +
    1
    = 2 ...(i)
    x

    Expression =      x4 +
    1
    x2
    x2 - 3x + 1

    =
    x6 + 1
    x2
    x2 - 3x + 1

    Expression =
    x6 + 1
    ( x2 + 1 - 3x ).x2

    Expression =
    x6 + 1
    =
    x6 + 1
    ( 2x - 3x ).x2-x3

    Expression = -
    x6 + 1
    = -
    x6
    +
    1
    x3x3x3

    = -x3 +
    1
    x3

    Expression = - x +
    1
    3 - 3 x +
    1
    xx

    = – [23 – 3 × 2]
    = – 2



  1. If x = 1 – √2 , the value ofx -
    1
    3 is :
    x










  1. View Hint View Answer Discuss in Forum

    x = 1 – √2
    On multiplying and divided by ( 1 + √2 )

    1
    =
    1 × ( 1 + √2 )
    x( 1 – √2 )( 1 + √2 )

    = 1 – √2
    x -
    1
    3 = ( 1 – √2 + 1 + √2 )3
    x

    = 23 = 8

    Correct Option: B

    x = 1 – √2
    On multiplying and divided by ( 1 + √2 )

    1
    =
    1 × ( 1 + √2 )
    x( 1 – √2 )( 1 + √2 )

    = 1 – √2
    x -
    1
    3 = ( 1 – √2 + 1 + √2 )3
    x

    = 23 = 8