-
If x2 + 1 = 2x , then the value of [ x2 + ( 1 / x2 ) ] is x2 - 3x + 1
-
- 0
- 1
- 2
- –2
- 0
Correct Option: D
x2 + 1 = 2x (Given)
⇒ x + | = 2 ...(i) | |
x |
Expression = | x4 + | |||||
x2 | ||||||
x2 - 3x + 1 |
= | ||||||
x2 | ||||||
x2 - 3x + 1 |
Expression = | ||
( x2 + 1 - 3x ).x2 |
Expression = | = | ||
( 2x - 3x ).x2 | -x3 |
Expression = - | = - | + | ||||||||
x3 | x3 | x3 |
= - | x3 + | ||||
x3 |
Expression = - | x + | 3 | - 3 | x + | |||||||||
x | x |
= – [23 – 3 × 2]
= – 2