Algebra
- If (a – b) = 3 and (a2 + b2) = 25, then the value of (ab) is
-
View Hint View Answer Discuss in Forum
a – b = 3
On squaring both sides,
(a – b)2 = 9
⇒ a2 + b2 – 2ab = 9
⇒ 25 – 2ab = 9
⇒ 2ab = 25 – 9 = 16⇒ ab = 16 = 8 2 Correct Option: B
a – b = 3
On squaring both sides,
(a – b)2 = 9
⇒ a2 + b2 – 2ab = 9
⇒ 25 – 2ab = 9
⇒ 2ab = 25 – 9 = 16⇒ ab = 16 = 8 2
-
If 2p = 1 , then the value of p + 1 will be p2 − 2p + 1 4 p
-
View Hint View Answer Discuss in Forum
2p = 1 p2 − 2p + 1 4 p2 − 2p + 1 = 4 2p ⇒ p2 − 2p + 1 = 8 p p p ⇒ p + 1 = 8 + 2 = 10 p Correct Option: B
2p = 1 p2 − 2p + 1 4 p2 − 2p + 1 = 4 2p ⇒ p2 − 2p + 1 = 8 p p p ⇒ p + 1 = 8 + 2 = 10 p
- If x = 99, then the value of 2(x2 + 3x + 3 ) is equal to
-
View Hint View Answer Discuss in Forum
x2 + 3x + 3
= x2 + 2x + 1 + x + 2
= (x + 1)2 + x + 2
= (99 + 1)2 + 99 + 2
= (100)2 + 101
= 10000 + 101 = 10101
∴ 2(x2 + 3x + 3 ) = 2 × 10101 = 20202Correct Option: E
x2 + 3x + 3
= x2 + 2x + 1 + x + 2
= (x + 1)2 + x + 2
= (99 + 1)2 + 99 + 2
= (100)2 + 101
= 10000 + 101 = 10101
∴ 2(x2 + 3x + 3 ) = 2 × 10101 = 20202
-
If p2 + q2 = 7 pq, then the value of p + q is equal to q p
-
View Hint View Answer Discuss in Forum
p2 + q2 = 7 pq
⇒ p2 + q2 = 7 pq ⇒ p2 + q2 = 7 pq pq ⇒ p + q = 7 q p Correct Option: C
p2 + q2 = 7 pq
⇒ p2 + q2 = 7 pq ⇒ p2 + q2 = 7 pq pq ⇒ p + q = 7 q p
- If 9x2 + 16y2 = 60 and 3x + 4y = 6, then the value of xy is
-
View Hint View Answer Discuss in Forum
9x2 + 16y2 = 60
and 3x + 4y = 6
On squaring,
9x2 + 16y2 + 2 × 3x × 4y = 36
⇒ 60 + 24xy = 36
⇒ 24xy = 36 – 60 = –24⇒ xy = − 24 = – 1 24 Correct Option: A
9x2 + 16y2 = 60
and 3x + 4y = 6
On squaring,
9x2 + 16y2 + 2 × 3x × 4y = 36
⇒ 60 + 24xy = 36
⇒ 24xy = 36 – 60 = –24⇒ xy = − 24 = – 1 24