Algebra
-
If x = 4ab (a ≠ b) , the value of x + 2a + x + 2b is; a + b x − 2a x − 2b
-
View Hint View Answer Discuss in Forum
x = 4ab ⇒ x = 2b a + b 2a a + b
By componendo and dividendo,x + 2a = 2b + a + b = 3b + a x − 2a 2b − a − b b − a Similarly, x = 2a 2b a + b ⇒ x + 2a = 2b + a + b = 3a + b x − 2a 2b − a − b a − b ∴ x + 2a + x + 2b x − 2a x − 2b = 3b + a + 3a + b b − a a − b = 3b + a − 3a − b = 2b − 2a b − a b − a = 2(b − a) = 2 b − a Correct Option: D
x = 4ab ⇒ x = 2b a + b 2a a + b
By componendo and dividendo,x + 2a = 2b + a + b = 3b + a x − 2a 2b − a − b b − a Similarly, x = 2a 2b a + b ⇒ x + 2a = 2b + a + b = 3a + b x − 2a 2b − a − b a − b ∴ x + 2a + x + 2b x − 2a x − 2b = 3b + a + 3a + b b − a a − b = 3b + a − 3a − b = 2b − 2a b − a b − a = 2(b − a) = 2 b − a
-
If x + 9 = 6, then the value of x2 + 9 is : x x2
-
View Hint View Answer Discuss in Forum
x + 9 = 6 x
⇒ x2 – 6x + 9 = 0
⇒ (x – 3)2 = 0 ⇒ x = 3∴ x2 + 9 = 9 + 9 = 10 x2 9 Correct Option: C
x + 9 = 6 x
⇒ x2 – 6x + 9 = 0
⇒ (x – 3)2 = 0 ⇒ x = 3∴ x2 + 9 = 9 + 9 = 10 x2 9
-
If x = √3 + √2, then the value of x2 − 1 is : x2
-
View Hint View Answer Discuss in Forum
x = √3 + √2
1 = 1 x √3 + √2 = 1 × 3 − 2√2 = √3 − √2 √3 + √2 √3 − √2 ∴ x + 1 = 2√3 x ∴ x2 + 1 = x + 1 2 − 2 x2 x
= (2√3)2 − 2
= 12 – 2 = 10Correct Option: D
x = √3 + √2
1 = 1 x √3 + √2 = 1 × 3 − 2√2 = √3 − √2 √3 + √2 √3 − √2 ∴ x + 1 = 2√3 x ∴ x2 + 1 = x + 1 2 − 2 x2 x
= (2√3)2 − 2
= 12 – 2 = 10
-
If x = 3 + 2 √2, then the value of √x − 1 is : √x
-
View Hint View Answer Discuss in Forum
x = 3 + 2√2
∴ 1 = 1 x 3 + 2√2 = 1 × 3 − 2√2 3 + 2√2 3 − 2√2 = 3 − 2√2 = 3 − 2√2 9 − 8 ∴ √x + 1 2 = x + 1 − 2 √x x
= 3 + 2√2 + 3 − 2√2
= 4∴ √x − 1 = 2 √x Correct Option: B
x = 3 + 2√2
∴ 1 = 1 x 3 + 2√2 = 1 × 3 − 2√2 3 + 2√2 3 − 2√2 = 3 − 2√2 = 3 − 2√2 9 − 8 ∴ √x + 1 2 = x + 1 − 2 √x x
= 3 + 2√2 + 3 − 2√2
= 4∴ √x − 1 = 2 √x
- If a2 + b2 + c2 + 3 = 2 (a + b + c) then the value of (a + b + c) is
-
View Hint View Answer Discuss in Forum
a2 + b2 + c2 + 3
= 2a + 2b + 2c
⇒ a2 – 2a + 1 + b2 – 2b + 1 + c2 – 2c + 1 = 0
⇒ (a – 1)2 +(b –1)2 +(c – 1)2 = 0
⇒ a – 1 = 0 ⇒ a = 1;
b – 1 = 0 ⇒ b = 1
and, c – 1 = 0 ⇒ c = 1
∴ a + b + c = 3Correct Option: B
a2 + b2 + c2 + 3
= 2a + 2b + 2c
⇒ a2 – 2a + 1 + b2 – 2b + 1 + c2 – 2c + 1 = 0
⇒ (a – 1)2 +(b –1)2 +(c – 1)2 = 0
⇒ a – 1 = 0 ⇒ a = 1;
b – 1 = 0 ⇒ b = 1
and, c – 1 = 0 ⇒ c = 1
∴ a + b + c = 3