Algebra


  1. If   x =
    4ab
    (a ≠ b) , the value of
    x + 2a
    +
    x + 2b
      is;
    a + bx − 2ax − 2b









  1. View Hint View Answer Discuss in Forum

    x =
    4ab
    x
    =
    2b
    a + b2aa + b

    By componendo and dividendo,
    x + 2a
    =
    2b + a + b
    =
    3b + a
    x − 2a2b − a − bb − a

    Similarly,  
    x
    =
    2a
    2ba + b

    ⇒ 
    x + 2a
    =
    2b + a + b
    =
    3a + b
    x − 2a2b − a − ba − b

    ∴ 
    x + 2a
    +
    x + 2b
    x − 2ax − 2b

    =
    3b + a
    +
    3a + b
    b − aa − b

    =
    3b + a − 3a − b
    =
    2b − 2a
    b − ab − a
    =
    2(b − a)
    = 2
    b − a

    Correct Option: D

    x =
    4ab
    x
    =
    2b
    a + b2aa + b

    By componendo and dividendo,
    x + 2a
    =
    2b + a + b
    =
    3b + a
    x − 2a2b − a − bb − a

    Similarly,  
    x
    =
    2a
    2ba + b

    ⇒ 
    x + 2a
    =
    2b + a + b
    =
    3a + b
    x − 2a2b − a − ba − b

    ∴ 
    x + 2a
    +
    x + 2b
    x − 2ax − 2b

    =
    3b + a
    +
    3a + b
    b − aa − b

    =
    3b + a − 3a − b
    =
    2b − 2a
    b − ab − a
    =
    2(b − a)
    = 2
    b − a


  1. If   x +
    9
    = 6, then the value ofx2 +
    9
    is :
    xx2









  1. View Hint View Answer Discuss in Forum

    x +
    9
    = 6
    x

    ⇒  x2 – 6x + 9 = 0
    ⇒  (x – 3)2 = 0 ⇒ x = 3
    ∴ x2 +
    9
    = 9 +
    9
    = 10
    x29

    Correct Option: C

    x +
    9
    = 6
    x

    ⇒  x2 – 6x + 9 = 0
    ⇒  (x – 3)2 = 0 ⇒ x = 3
    ∴ x2 +
    9
    = 9 +
    9
    = 10
    x29



  1. If   x = √3 + √2, then the value of x2
    1
    is :
    x2









  1. View Hint View Answer Discuss in Forum

    x = √3 + √2

    1
    =
    1
    x3 + √2

    =
    1
    ×
    3 − 2√2
    = √3 − √2
    3 + √23 − √2

    ∴  x +
    1
    = 2√3
    x

    ∴ x2 +
    1
    = x +
    1
    2 − 2
    x2x

    = (2√3)2 − 2
    = 12 – 2 = 10

    Correct Option: D

    x = √3 + √2

    1
    =
    1
    x3 + √2

    =
    1
    ×
    3 − 2√2
    = √3 − √2
    3 + √23 − √2

    ∴  x +
    1
    = 2√3
    x

    ∴ x2 +
    1
    = x +
    1
    2 − 2
    x2x

    = (2√3)2 − 2
    = 12 – 2 = 10


  1. If   x = 3 + 2 √2, then the value of x
    1
    is :
    x









  1. View Hint View Answer Discuss in Forum

    x = 3 + 2√2

    ∴ 
    1
    =
    1
    x3 + 2√2

    =
    1
    ×
    3 − 2√2
    3 + 2√23 − 2√2

    =
    3 − 2√2
    = 3 − 2√2
    9 − 8

    ∴  x +
    1
    2 = x +
    1
    − 2
    xx

    = 3 + 2√2 + 3 − 2√2
    = 4
    ∴  x
    1
    = 2
    x

    Correct Option: B

    x = 3 + 2√2

    ∴ 
    1
    =
    1
    x3 + 2√2

    =
    1
    ×
    3 − 2√2
    3 + 2√23 − 2√2

    =
    3 − 2√2
    = 3 − 2√2
    9 − 8

    ∴  x +
    1
    2 = x +
    1
    − 2
    xx

    = 3 + 2√2 + 3 − 2√2
    = 4
    ∴  x
    1
    = 2
    x



  1. If a2 + b2 + c2 + 3 = 2 (a + b + c) then the value of (a + b + c) is









  1. View Hint View Answer Discuss in Forum

    a2 + b2 + c2 + 3
    = 2a + 2b + 2c
    ⇒  a2 – 2a + 1 + b2 – 2b + 1 + c2 – 2c + 1 = 0
    ⇒  (a – 1)2 +(b –1)2 +(c – 1)2 = 0
    ⇒  a – 1 = 0 ⇒ a = 1;
      b – 1 = 0 ⇒ b = 1
    and, c – 1 = 0 ⇒ c = 1
    ∴  a + b + c = 3

    Correct Option: B

    a2 + b2 + c2 + 3
    = 2a + 2b + 2c
    ⇒  a2 – 2a + 1 + b2 – 2b + 1 + c2 – 2c + 1 = 0
    ⇒  (a – 1)2 +(b –1)2 +(c – 1)2 = 0
    ⇒  a – 1 = 0 ⇒ a = 1;
      b – 1 = 0 ⇒ b = 1
    and, c – 1 = 0 ⇒ c = 1
    ∴  a + b + c = 3