Algebra


  1. If a + b = 1, c + d = 1 and a – b =
    d
    , then the value of c2 − d2 is
    c









  1. View Hint View Answer Discuss in Forum

    d
    = a − b
    c

    ⇒ 
    c
    =
    1
    =
    a + b
    da − ba − b

    ⇒ 
    c + d
    =
    a + b + a − b
    =
    a
    c − da + b − a + bb

    (By componendo and dividendo)
    ⇒ 
    1
    =
    a
    c − db

    ⇒  (c – d) =
    b
    a

    ⇒  c2 – d2 = (c + d) (c – d) =
    b
    a

    Correct Option: B

    d
    = a − b
    c

    ⇒ 
    c
    =
    1
    =
    a + b
    da − ba − b

    ⇒ 
    c + d
    =
    a + b + a − b
    =
    a
    c − da + b − a + bb

    (By componendo and dividendo)
    ⇒ 
    1
    =
    a
    c − db

    ⇒  (c – d) =
    b
    a

    ⇒  c2 – d2 = (c + d) (c – d) =
    b
    a


  1. If  
    b − c
    +
    a + c
    +
    a − b
    = 1 and a – b + c ≠ 0
    abc
    then which one of the following relations is true ?









  1. View Hint View Answer Discuss in Forum

    b − c
    +
    a + c
    +
    a − b
    = 1
    abc

    ⇒ 
    b − c
    +
    a − b
    +
    a + c
    − 1 = 0
    acb

    ⇒ 
    b − c
    +
    a − b
    +
    a + c − b
    = 0
    acb

    ⇒ 
    c − b
    +
    b − a
    =
    a + c − b
    acb

    ⇒ 
    c2 − bc + ab − a2
    =
    a + c − b
    acb

    ⇒ 
    (c2 − a2) − (bc − ab)
    =
    a + c − b
    acb

    ⇒ 
    (c − a) (c + a) − b(c − a)
    =
    a + c − b
    acb

    ⇒ 
    (c − a)(c + a − b)
    =
    a + c − b
    acb

    ⇒ 
    c − a
    =
    1
    acb

    ⇒ 
    c
    a
    =
    1
    acacb

    ⇒ 
    1
    1
    =
    1
    acb

    Correct Option: C

    b − c
    +
    a + c
    +
    a − b
    = 1
    abc

    ⇒ 
    b − c
    +
    a − b
    +
    a + c
    − 1 = 0
    acb

    ⇒ 
    b − c
    +
    a − b
    +
    a + c − b
    = 0
    acb

    ⇒ 
    c − b
    +
    b − a
    =
    a + c − b
    acb

    ⇒ 
    c2 − bc + ab − a2
    =
    a + c − b
    acb

    ⇒ 
    (c2 − a2) − (bc − ab)
    =
    a + c − b
    acb

    ⇒ 
    (c − a) (c + a) − b(c − a)
    =
    a + c − b
    acb

    ⇒ 
    (c − a)(c + a − b)
    =
    a + c − b
    acb

    ⇒ 
    c − a
    =
    1
    acb

    ⇒ 
    c
    a
    =
    1
    acacb

    ⇒ 
    1
    1
    =
    1
    acb



  1. If
    a + b − c
    =
    b + c − a
    =
    c + a − b
    and a + b + c ≠ 0, then
    a + bb + cc + a









  1. View Hint View Answer Discuss in Forum

    a + b − c
    =
    b + c − a
    =
    c + a − b
    a + bb + cc + a

    ⇒ 
    a + b
    c
    =
    b + c
    a
    =
    c + a
    b
    a + ba + bb + cb + cc + ac + a

    ⇒  1 −
    c
    = 1 −
    a
    = 1 −
    b
    a + b b + c c + a

    ⇒ 
    c
    =
    a
    =
    b
    a + b b + c c + a

    ⇒ 
    a + b
    =
    b + c
    =
    c + a
    cab

    ⇒ 
    a + b
    + 1 =
    b + c
    + 1 =
    c + a
    + 1
    cab

    ⇒ 
    a + b + c
    =
    b + c + a
    =
    c + a + b
    cab

    ⇒ 
    1
    =
    1
    =
    1
    ⇒ a = b = c
    cab

    Correct Option: B

    a + b − c
    =
    b + c − a
    =
    c + a − b
    a + bb + cc + a

    ⇒ 
    a + b
    c
    =
    b + c
    a
    =
    c + a
    b
    a + ba + bb + cb + cc + ac + a

    ⇒  1 −
    c
    = 1 −
    a
    = 1 −
    b
    a + b b + c c + a

    ⇒ 
    c
    =
    a
    =
    b
    a + b b + c c + a

    ⇒ 
    a + b
    =
    b + c
    =
    c + a
    cab

    ⇒ 
    a + b
    + 1 =
    b + c
    + 1 =
    c + a
    + 1
    cab

    ⇒ 
    a + b + c
    =
    b + c + a
    =
    c + a + b
    cab

    ⇒ 
    1
    =
    1
    =
    1
    ⇒ a = b = c
    cab


  1. If   x +
    1
    = 1 then the value of
    2
    = ?
    xx2 − x + 2









  1. View Hint View Answer Discuss in Forum

    x +
    1
    = 1
    x

    ⇒  x2 + 1 = x ⇒ x2 – x + 1 = 0
    ∴ 
    2
    =
    2
    x2 – x + 2x2 – x + 1 + 1

    =
    2
    = 2
    0 + 1

    Correct Option: A

    x +
    1
    = 1
    x

    ⇒  x2 + 1 = x ⇒ x2 – x + 1 = 0
    ∴ 
    2
    =
    2
    x2 – x + 2x2 – x + 1 + 1

    =
    2
    = 2
    0 + 1



  1. If   x =
    5 − √3
    and y =
    5 + √3
    then the value of
    x2 + xy + y2
    = ?
    5 + √35 − √3x2 − xy + y2









  1. View Hint View Answer Discuss in Forum

    x =
    5 − √3
    , y =
    5 + √3
    5 + √35 − √3

    ∴  x + y =
    5 − √3
    +
    5 + √3
    5 + √35 − √3

    =
    (√5 − √3)2 + (√5 + √3)2
    (√5 + √3) × (√5 − √3)

    =
    2[(√5)2 + (√3)2]
    5 − 3

    = 5 + 3 = 8
    xy =
    5 − √3
    ×
    5 + √3
    = 1
    5 + √35 − √3

    =
    x2 + xy + y2
    x2 − xy + y2

    ∴ 
    (x + y)2 − xy
    (x + y)2 − 3xy

    =
    (8)2 − 1
    (8)2 − 3

    =
    64 − 1
    64 − 3

    =
    63
    61

    Correct Option: A

    x =
    5 − √3
    , y =
    5 + √3
    5 + √35 − √3

    ∴  x + y =
    5 − √3
    +
    5 + √3
    5 + √35 − √3

    =
    (√5 − √3)2 + (√5 + √3)2
    (√5 + √3) × (√5 − √3)

    =
    2[(√5)2 + (√3)2]
    5 − 3

    = 5 + 3 = 8
    xy =
    5 − √3
    ×
    5 + √3
    = 1
    5 + √35 − √3

    =
    x2 + xy + y2
    x2 − xy + y2

    ∴ 
    (x + y)2 − xy
    (x + y)2 − 3xy

    =
    (8)2 − 1
    (8)2 − 3

    =
    64 − 1
    64 − 3

    =
    63
    61