Home » Aptitude » Algebra » Question
  1. If  
    b − c
    +
    a + c
    +
    a − b
    = 1 and a – b + c ≠ 0
    abc
    then which one of the following relations is true ?
    1. 1
      =
      1
      +
      1
      cab
    2. 1
      =
      1
      +
      1
      abc
    3. 1
      =
      1
      1
      bac
    4. 1
      =
      1
      +
      1
      bac
Correct Option: C

b − c
+
a + c
+
a − b
= 1
abc

⇒ 
b − c
+
a − b
+
a + c
− 1 = 0
acb

⇒ 
b − c
+
a − b
+
a + c − b
= 0
acb

⇒ 
c − b
+
b − a
=
a + c − b
acb

⇒ 
c2 − bc + ab − a2
=
a + c − b
acb

⇒ 
(c2 − a2) − (bc − ab)
=
a + c − b
acb

⇒ 
(c − a) (c + a) − b(c − a)
=
a + c − b
acb

⇒ 
(c − a)(c + a − b)
=
a + c − b
acb

⇒ 
c − a
=
1
acb

⇒ 
c
a
=
1
acacb

⇒ 
1
1
=
1
acb



Your comments will be displayed only after manual approval.