Algebra
-
If 2x + 1 =1, then the value of x2 + 1 is 4x 64x2
-
View Hint View Answer Discuss in Forum
2x + 1 = 1 4x
On dividing by 2, we getx + 1 = 1 8x 2
On squaring both sides, we getx + 1 2 = 1 8x 4 ⇒ x2 + 1 + 2 × x × 1 = 1 64x2 8x 4 ⇒ x2 + 1 + 1 = 1 64x2 4 4 ⇒ x2 + 1 = 1 − 1 = 0 64x2 4 4 Correct Option: A
2x + 1 = 1 4x
On dividing by 2, we getx + 1 = 1 8x 2
On squaring both sides, we getx + 1 2 = 1 8x 4 ⇒ x2 + 1 + 2 × x × 1 = 1 64x2 8x 4 ⇒ x2 + 1 + 1 = 1 64x2 4 4 ⇒ x2 + 1 = 1 − 1 = 0 64x2 4 4
-
If a + b + c = 2c, find a + c . a − c b − c
-
View Hint View Answer Discuss in Forum
a + b = 2c
⇒ a – c = c – b∴ a + c a − c b − c = a + c c – b b − c = a − c c – b c – b = a − c = c – b = 1 c – b c – b Correct Option: B
a + b = 2c
⇒ a – c = c – b∴ a + c a − c b − c = a + c c – b b − c = a − c c – b c – b = a − c = c – b = 1 c – b c – b
-
If a + b + c = 0 then the value of a2 + b2 + c2 is ab + bc + ca
-
View Hint View Answer Discuss in Forum
a + b + c = 0
∴ (a + b + c)2 = 0
⇒ a2 + b2 + c2 + 2ab + 2bc + 2ca = 0
⇒ a2 + b2 + c2 = – 2ab – 2bc – 2ca∴ a2 + b2 + c2 ab + bc + ca = −2(ab + bc + ca) = −2 ab + bc + ca Correct Option: B
a + b + c = 0
∴ (a + b + c)2 = 0
⇒ a2 + b2 + c2 + 2ab + 2bc + 2ca = 0
⇒ a2 + b2 + c2 = – 2ab – 2bc – 2ca∴ a2 + b2 + c2 ab + bc + ca = −2(ab + bc + ca) = −2 ab + bc + ca
- The value of (2a + b)2 – (2a – b)2 is :
-
View Hint View Answer Discuss in Forum
x2 – y2 = (x + y) (x – y)
∴ (2a + b)2 – (2a – b)2 = (2a + b + 2a – b) (2a + b – 2a + b)
= 4a × 2b = 8abCorrect Option: A
x2 – y2 = (x + y) (x – y)
∴ (2a + b)2 – (2a – b)2 = (2a + b + 2a – b) (2a + b – 2a + b)
= 4a × 2b = 8ab
-
If a + b + c = m and 1 + 1 + 1 = 0, then average of a2,b2 and c2 is a b c
-
View Hint View Answer Discuss in Forum
a + b + c = m
and , 1 + 1 + 1 = 0 a b c ⇒ bc + ac + ab = 0 abc
⇒ bc + ac + ab = 0
∴ (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
⇒ m2 = a2 + b2 + c2 + 2 × 0
⇒ a2 + b2 + c2 = m2
∴ Required average = a2 + b2 + c2 = m2 3 3 Correct Option: B
a + b + c = m
and , 1 + 1 + 1 = 0 a b c ⇒ bc + ac + ab = 0 abc
⇒ bc + ac + ab = 0
∴ (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
⇒ m2 = a2 + b2 + c2 + 2 × 0
⇒ a2 + b2 + c2 = m2
∴ Required average = a2 + b2 + c2 = m2 3 3