Algebra


  1. If x4 +
    1
    = 119 , then the values of x3 +
    1
    are
    x4x3










  1. View Hint View Answer Discuss in Forum

    x4 +
    1
    = 119
    x4

    x2 +
    1
    2 - 2 = 119
    x2

    x2 +
    1
    2 = 119 + 2 = 121
    x2

    x2 +
    1
    2 = (11)2
    x2

    ⇒ x2 +
    1
    = 11
    x2

    Again, x +
    1
    2 - 2 = 11
    x

    x +
    1
    2 = 11 + 2 = 13
    x

    ⇒ x +
    1
    = ± √13
    x

    On cubing both sides,
    x +
    1
    3 = ( ± √13 )3
    x

    ⇒ x3 +
    1
    + 3 . x .
    1
    x +
    1
    = ± √13
    x3xx

    ⇒ x3 +
    1
    + 3 × ( ± √13 ) = ± √13
    x3

    ⇒ x3 -
    1
    = ± (13√13 - 3√13) = ± 10√13
    x3

    Correct Option: A

    x4 +
    1
    = 119
    x4

    x2 +
    1
    2 - 2 = 119
    x2

    x2 +
    1
    2 = 119 + 2 = 121
    x2

    x2 +
    1
    2 = (11)2
    x2

    ⇒ x2 +
    1
    = 11
    x2

    Again, x +
    1
    2 - 2 = 11
    x

    x +
    1
    2 = 11 + 2 = 13
    x

    ⇒ x +
    1
    = ± √13
    x

    On cubing both sides,
    x +
    1
    3 = ( ± √13 )3
    x

    ⇒ x3 +
    1
    + 3 . x .
    1
    x +
    1
    = ± √13
    x3xx

    ⇒ x3 +
    1
    + 3 × ( ± √13 ) = ± √13
    x3

    ⇒ x3 -
    1
    = ± (13√13 - 3√13) = ± 10√13
    x3


  1. If x = 2015, y = 2014 and z = 2013, then value of x2 + y2 + z2 – xy – yz – zx is









  1. View Hint View Answer Discuss in Forum

    x – y = 2015 – 2014 = 1
    y – z = 2014 – 2013 = 1
    z – x = 2013 – 2015 = –2

    ∴ x2 + y2 + z2 – xy – yz – zx =
    1
    [ 2x2 + 2y2 + 2z2 – 2xy – 2yz – 2zx ]
    2

    ⇒ x2 + y2 + z2 – xy – yz – zx =
    1
    [ x2 + y2 – 2xy + y2 + z2 – 2yz + z2 + x2 – 2zx ]
    2

    ⇒ x2 + y2 + z2 – xy – yz – zx =
    1
    [ (x - y)2 + (y - z)2 + (z - x)2 ]
    2

    ⇒ x2 + y2 + z2 – xy – yz – zx =
    1
    [ (-1)2 + (-1)2 + (2)2 ]
    2

    ⇒ x2 + y2 + z2 – xy – yz – zx =
    1
    [ 1 + 1 + 4 ]
    2

    ⇒ x2 + y2 + z2 – xy – yz – zx =
    1
    × 6 = 3
    2

    Correct Option: A

    x – y = 2015 – 2014 = 1
    y – z = 2014 – 2013 = 1
    z – x = 2013 – 2015 = –2

    ∴ x2 + y2 + z2 – xy – yz – zx =
    1
    [ 2x2 + 2y2 + 2z2 – 2xy – 2yz – 2zx ]
    2

    ⇒ x2 + y2 + z2 – xy – yz – zx =
    1
    [ x2 + y2 – 2xy + y2 + z2 – 2yz + z2 + x2 – 2zx ]
    2

    ⇒ x2 + y2 + z2 – xy – yz – zx =
    1
    [ (x - y)2 + (y - z)2 + (z - x)2 ]
    2

    ⇒ x2 + y2 + z2 – xy – yz – zx =
    1
    [ (-1)2 + (-1)2 + (2)2 ]
    2

    ⇒ x2 + y2 + z2 – xy – yz – zx =
    1
    [ 1 + 1 + 4 ]
    2

    ⇒ x2 + y2 + z2 – xy – yz – zx =
    1
    × 6 = 3
    2



  1. If p3 + 3p2 + 3p = 7, then the value of p2 + 2p is









  1. View Hint View Answer Discuss in Forum

    Using Rule 8,
    p3 + 3p2 + 3p = 7
    ⇒ p3 + 3p2 + 3p + 1 = 7 + 1 = 8
    ⇒ ( p + 1 )3 = (2)3
    ⇒ p + 1 = 2 ⇒ p = 2 – 1 = 1
    ∴ p2 + 2p = 1 + 2 × 1 = 3

    Correct Option: B

    Using Rule 8,
    p3 + 3p2 + 3p = 7
    ⇒ p3 + 3p2 + 3p + 1 = 7 + 1 = 8
    ⇒ ( p + 1 )3 = (2)3
    ⇒ p + 1 = 2 ⇒ p = 2 – 1 = 1
    ∴ p2 + 2p = 1 + 2 × 1 = 3


  1. If a + b + c = 0, then the value of (a + b – c)2 + (b + c – a)2 + (c + a – b)2 is









  1. View Hint View Answer Discuss in Forum

    a + b + c = 0 (Given)
    ∴ a + b = – c
    b + c = – a
    c + a = – b
    ∴ (a + b – c)2 + (b + c – a)2 + (c + a – b)2 = (-c – c)2 + (-a – a)2 + (-b – b)2
    = (– 2c)2 + (- 2a)2 + (– 2b)2 = 4c2 + 4a2 + 4b2 = 4(c2 + a2 + b2)

    Correct Option: C

    a + b + c = 0 (Given)
    ∴ a + b = – c
    b + c = – a
    c + a = – b
    ∴ (a + b – c)2 + (b + c – a)2 + (c + a – b)2 = (-c – c)2 + (-a – a)2 + (-b – b)2
    = (– 2c)2 + (- 2a)2 + (– 2b)2 = 4c2 + 4a2 + 4b2 = 4(c2 + a2 + b2)



  1. If x = p +
    1
    and y = p -
    1
    , then the value of x4 - 2x2y2 + y4 is :
    pp










  1. View Hint View Answer Discuss in Forum

    x = p +
    1
    p

    y = p -
    1
    p

    ∴ x + y = p +
    1
    + p -
    1
    = 2p
    pp

    x - y = p +
    1
    - p +
    1
    =
    2
    ppp

    ∴ x4 - 2x2y2 + y4 = ( x2 - y2 )2 = { (x - y)(x + y) }2
    x4 - 2x2y2 + y4 = 2p ×
    2
    2 = 42 = 16
    p

    Correct Option: C

    x = p +
    1
    p

    y = p -
    1
    p

    ∴ x + y = p +
    1
    + p -
    1
    = 2p
    pp

    x - y = p +
    1
    - p +
    1
    =
    2
    ppp

    ∴ x4 - 2x2y2 + y4 = ( x2 - y2 )2 = { (x - y)(x + y) }2
    x4 - 2x2y2 + y4 = 2p ×
    2
    2 = 42 = 16
    p