Home » Aptitude » Algebra » Question
  1. If x4 +
    1
    = 119 , then the values of x3 +
    1
    are
    x4x3

    1. ± 10√13
    2. ± √13
    3. ± 16√13
    4. ± 13√13
Correct Option: A

x4 +
1
= 119
x4

x2 +
1
2 - 2 = 119
x2

x2 +
1
2 = 119 + 2 = 121
x2

x2 +
1
2 = (11)2
x2

⇒ x2 +
1
= 11
x2

Again, x +
1
2 - 2 = 11
x

x +
1
2 = 11 + 2 = 13
x

⇒ x +
1
= ± √13
x

On cubing both sides,
x +
1
3 = ( ± √13 )3
x

⇒ x3 +
1
+ 3 . x .
1
x +
1
= ± √13
x3xx

⇒ x3 +
1
+ 3 × ( ± √13 ) = ± √13
x3

⇒ x3 -
1
= ± (13√13 - 3√13) = ± 10√13
x3



Your comments will be displayed only after manual approval.