Algebra
-
If x + 1 = √3 , then the value of x30 + x24 + x18 + x12 + x6 + 1 is x
-
View Hint View Answer Discuss in Forum
Using Rule 8,
x + 1 = √3 x
On cubing both sides,⇒ x3 + 1 + 3 x + 1 = 3√3 x3 x ⇒ x3 + 1 + 3√3 = 3√3 x3 ⇒ x3 + 1 = 0 x3
∴ Expression = x30 + x24 + x18 + x12 + x6 + 1
Expression = x24( x6 + 1 ) + x12( x6 + 1 ) + 1( x6 + 1 )
Expression = ( x6 + 1 )( x24 + x12 + 1 )Expression = x3 x3 + 1 ( x24 + x12 + 1 ) = 0 x3 Correct Option: D
Using Rule 8,
x + 1 = √3 x
On cubing both sides,⇒ x3 + 1 + 3 x + 1 = 3√3 x3 x ⇒ x3 + 1 + 3√3 = 3√3 x3 ⇒ x3 + 1 = 0 x3
∴ Expression = x30 + x24 + x18 + x12 + x6 + 1
Expression = x24( x6 + 1 ) + x12( x6 + 1 ) + 1( x6 + 1 )
Expression = ( x6 + 1 )( x24 + x12 + 1 )Expression = x3 x3 + 1 ( x24 + x12 + 1 ) = 0 x3
-
If x - 1 2 = 3 , then the value of x6 + 1 equals x x6
-
View Hint View Answer Discuss in Forum
x - 1 2 = 3 x ⇒ x2 + 1 - 2 = 3 x2 ⇒ x2 + 1 = 3 + 2 = 5 x2
On cubing both sides,x2 + 1 3 = (5)3 x2 ⇒ x6 + 1 + 3 x2 + 1 = 125 x6 x2 ⇒ x6 + 1 + 3 × 5 = 125 x6 ⇒ x6 + 1 = 125 – 15 = 110 x6 Correct Option: C
x - 1 2 = 3 x ⇒ x2 + 1 - 2 = 3 x2 ⇒ x2 + 1 = 3 + 2 = 5 x2
On cubing both sides,x2 + 1 3 = (5)3 x2 ⇒ x6 + 1 + 3 x2 + 1 = 125 x6 x2 ⇒ x6 + 1 + 3 × 5 = 125 x6 ⇒ x6 + 1 = 125 – 15 = 110 x6
-
If x + 1 = 3 , then the value of x5 + 1 is : x x5
-
View Hint View Answer Discuss in Forum
Using Rule 1 and 8,
x + 1 = 3 x
On squaring both sides,⇒ x + 1 2 = 9 x ⇒ x2 + 1 + 2 = 9 x2 ⇒ x2 + 1 = 9 – 2 = 7 ... (i) x2
Again,⇒ x + 1 3 = (3)3 = 27 x ⇒ x3 + 1 + 3 x + 1 = 27 x3 x ⇒ x3 + 1 + 3 × 3 = 27 x3 ∴ x3 + 1 = 27 - 9 = 18 ...(ii) x3 ∴ x2 + 1 x3 + 1 = 18 × 7 = 126 x2 x3 ⇒ x5 + 1 + x + 1 = 126 x5 x ⇒ x5 + 1 = 126 – 3 = 123 x5 Correct Option: D
Using Rule 1 and 8,
x + 1 = 3 x
On squaring both sides,⇒ x + 1 2 = 9 x ⇒ x2 + 1 + 2 = 9 x2 ⇒ x2 + 1 = 9 – 2 = 7 ... (i) x2
Again,⇒ x + 1 3 = (3)3 = 27 x ⇒ x3 + 1 + 3 x + 1 = 27 x3 x ⇒ x3 + 1 + 3 × 3 = 27 x3 ∴ x3 + 1 = 27 - 9 = 18 ...(ii) x3 ∴ x2 + 1 x3 + 1 = 18 × 7 = 126 x2 x3 ⇒ x5 + 1 + x + 1 = 126 x5 x ⇒ x5 + 1 = 126 – 3 = 123 x5
-
When 2x + 2 = 3 , then value of x3 + 1 + 2 is x x3
-
View Hint View Answer Discuss in Forum
2x + 2 = 3 x
On dividing by 2,x + 1 = 3 x 2
On cubing both sides,⇒ x + 1 3 = 27 x 8 ⇒ x3 + 1 + 3 x + 1 = 27 x3 x 8 ⇒ x3 + 1 + 3 × 3 = 27 x3 2 8 ⇒ x3 + 1 = 27 - 9 x3 8 2 ⇒ x3 + 1 = 27 - 36 x3 8 ⇒ x3 + 1 = -9 x3 8 ∴ x3 + 1 + 2 = 2 - 9 = 16 - 9 = 7 x3 8 8 8 Correct Option: B
2x + 2 = 3 x
On dividing by 2,x + 1 = 3 x 2
On cubing both sides,⇒ x + 1 3 = 27 x 8 ⇒ x3 + 1 + 3 x + 1 = 27 x3 x 8 ⇒ x3 + 1 + 3 × 3 = 27 x3 2 8 ⇒ x3 + 1 = 27 - 9 x3 8 2 ⇒ x3 + 1 = 27 - 36 x3 8 ⇒ x3 + 1 = -9 x3 8 ∴ x3 + 1 + 2 = 2 - 9 = 16 - 9 = 7 x3 8 8 8
- If x = ³√x2 + 11 - 2 , then the value of (x3 + 5x2 + 12x) is
-
View Hint View Answer Discuss in Forum
x = ³√x2 + 11 - 2
⇒ x + 2 = ³√x2 + 11
On cubing both sides,
(x + 2)3 = x2 + 11
⇒ x3 + 23 + 3x2 × 2 + 3x × 22 = x2 + 11
⇒ x3 + 8 + 6x2 + 12x = x2 + 11
⇒ x3 + 5x2 + 12x = 11 – 8 = 3Correct Option: B
x = ³√x2 + 11 - 2
⇒ x + 2 = ³√x2 + 11
On cubing both sides,
(x + 2)3 = x2 + 11
⇒ x3 + 23 + 3x2 × 2 + 3x × 22 = x2 + 11
⇒ x3 + 8 + 6x2 + 12x = x2 + 11
⇒ x3 + 5x2 + 12x = 11 – 8 = 3