-
If x + 1 = 3 , then the value of x5 + 1 is : x x5
-
- 110
- 132
- 122
- 123
- 110
Correct Option: D
Using Rule 1 and 8,
x + | = 3 | |
x |
On squaring both sides,
⇒ | ![]() | x + | ![]() | 2 | = 9 | |
x |
⇒ x2 + | + 2 = 9 | |
x2 |
⇒ x2 + | = 9 – 2 = 7 ... (i) | |
x2 |
Again,
⇒ | ![]() | x + | ![]() | 3 | = (3)3 = 27 | |
x |
⇒ x3 + | + 3 | ![]() | x + | ![]() | = 27 | ||
x3 | x |
⇒ x3 + | + 3 × 3 = 27 | |
x3 |
∴ x3 + | = 27 - 9 = 18 ...(ii) | |
x3 |
∴ | ![]() | x2 + | ![]() | ![]() | x3 + | ![]() | = 18 × 7 = 126 | ||
x2 | x3 |
⇒ x5 + | + x + | = 126 | ||
x5 | x |
⇒ x5 + | = 126 – 3 = 123 | |
x5 |