Algebra


  1. If (2a – 1)2 + (4b – 3)2 + (4c + 5)2 = 0 ,then the value of
    a3 + b3 + c3 - 3abc
    = 0
    a2 + b2 + c2









  1. View Hint View Answer Discuss in Forum

    (2a – 1)2 + (4b – 3)2 + (4c + 5)2 = 0

    ∴ 2a – 1 = 0 ⇒ 2a = 1 ⇒ a =
    1
    2

    4b – 3 = 0 ⇒ 4b = 3 ⇒ b =
    3
    4

    4c + 5 = 0 ⇒ 4c = –5 ⇒ c =
    -5
    4

    [ If x2 + y2 + z2 = 0, x = 0, y = 0, z = 0]
    ∴ a + b + c =
    1
    +
    3
    -
    5
    244

    a + b + c =
    6 + 9 - 15
    = 0
    12

    ∴ a3 + b3 + c3 - 3abc = 0
    ∴ Required answer = 0

    Correct Option: D

    (2a – 1)2 + (4b – 3)2 + (4c + 5)2 = 0

    ∴ 2a – 1 = 0 ⇒ 2a = 1 ⇒ a =
    1
    2

    4b – 3 = 0 ⇒ 4b = 3 ⇒ b =
    3
    4

    4c + 5 = 0 ⇒ 4c = –5 ⇒ c =
    -5
    4

    [ If x2 + y2 + z2 = 0, x = 0, y = 0, z = 0]
    ∴ a + b + c =
    1
    +
    3
    -
    5
    244

    a + b + c =
    6 + 9 - 15
    = 0
    12

    ∴ a3 + b3 + c3 - 3abc = 0
    ∴ Required answer = 0


  1. If x4 + 2x3 + ax2 + bx + 9 is a perfect square, where a and b are positive real numbers, then the values of a and b are









  1. View Hint View Answer Discuss in Forum

    (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
    ∴ (x2 + x + 3)2 = x4 + x2 + 9 + 2x3 + 6x + 6x2
    = x4 + 2x3 + 7x2 + 6x + 9
    On comparing with x4 + 2x3 + ax2 + bx + 9
    a = 7, b = 6

    Correct Option: C

    (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
    ∴ (x2 + x + 3)2 = x4 + x2 + 9 + 2x3 + 6x + 6x2
    = x4 + 2x3 + 7x2 + 6x + 9
    On comparing with x4 + 2x3 + ax2 + bx + 9
    a = 7, b = 6



  1. If a2 + b2 + c2 = 16, x2 + y2 + z2 = 25 and ax + by + cz = 20, then the value of
    a + b + c
    is
    x + y + z










  1. View Hint View Answer Discuss in Forum

    (ax + by + cz)2 = (a2 + b2 + c2)(x2 + y2 + z2) = 400
    ⇒ a2x2 + b2y2 + c2z2 + 2abxy + 2bcyz + 2acxz
    = a2x2 + a2y2 + a2z2 + b2x2 + b2y2 + b2z2 +
    c2x2 + c2y2 + c2z2
    ⇒ a2y2 + a2z2 + b2x2 + b2z2 +
    c2x2 + c2y2 = 2abxy + 2bcyz + 2acxz
    ⇒ a2y2 - 2abxy + b2x2 + a2z2 + c2x2 - 2acxz + b2z2 + c2y2 - 2bcyz = 0
    ⇒ (ay – bx)2 + (az – cx)2 + (bz – cy)2 = 0

    ⇒ ay – bx = 0 ⇒ ay = bx ⇒
    a
    =
    x
    by

    az – cx = 0 ⇒ az = cx ⇒
    a
    =
    x
    cz

    ∴ a = kx ; b = ky; c = kz
    ∴ a2 + b2 + c2 = 16
    ⇒ k2(x2 + y2 + z2) = 16
    ⇒ k2 × 25 = 16
    ⇒ k2 =
    16
    ⇒ k =
    4
    255

    a + b + c
    = k =
    4
    x + y + z5

    Correct Option: C

    (ax + by + cz)2 = (a2 + b2 + c2)(x2 + y2 + z2) = 400
    ⇒ a2x2 + b2y2 + c2z2 + 2abxy + 2bcyz + 2acxz
    = a2x2 + a2y2 + a2z2 + b2x2 + b2y2 + b2z2 +
    c2x2 + c2y2 + c2z2
    ⇒ a2y2 + a2z2 + b2x2 + b2z2 +
    c2x2 + c2y2 = 2abxy + 2bcyz + 2acxz
    ⇒ a2y2 - 2abxy + b2x2 + a2z2 + c2x2 - 2acxz + b2z2 + c2y2 - 2bcyz = 0
    ⇒ (ay – bx)2 + (az – cx)2 + (bz – cy)2 = 0

    ⇒ ay – bx = 0 ⇒ ay = bx ⇒
    a
    =
    x
    by

    az – cx = 0 ⇒ az = cx ⇒
    a
    =
    x
    cz

    ∴ a = kx ; b = ky; c = kz
    ∴ a2 + b2 + c2 = 16
    ⇒ k2(x2 + y2 + z2) = 16
    ⇒ k2 × 25 = 16
    ⇒ k2 =
    16
    ⇒ k =
    4
    255

    a + b + c
    = k =
    4
    x + y + z5


  1. The value of x which satisfies the equation
    x + a2 + 2c2
    +
    x + b2 + 2a2
    +
    x + b2 + 2a2
    = 0 is
    b + cc + aa + b










  1. View Hint View Answer Discuss in Forum

    Of the given options,
    x = -(a2 + b2 + c2)

    x + a2 + 2c2
    =
    - a2 - b2 - c2 + a2 + 2c2
    b + cb + c

    =
    c2 - b2
    = c – b
    b + c

    x + b2 + 2a2
    =
    - a2 - b2 - c2 + b2 + 2a2
    c + ab + c

    =
    a2 - c2
    = a – c
    c + a

    x + c2 + 2b2
    =
    - a2 - b2 - c2 + c2 + 2b2
    a + bb + c

    =
    b2 - a2
    = b – a
    a + b

    ∴ c – b + a – c + b – a = 0

    Correct Option: B

    Of the given options,
    x = -(a2 + b2 + c2)

    x + a2 + 2c2
    =
    - a2 - b2 - c2 + a2 + 2c2
    b + cb + c

    =
    c2 - b2
    = c – b
    b + c

    x + b2 + 2a2
    =
    - a2 - b2 - c2 + b2 + 2a2
    c + ab + c

    =
    a2 - c2
    = a – c
    c + a

    x + c2 + 2b2
    =
    - a2 - b2 - c2 + c2 + 2b2
    a + bb + c

    =
    b2 - a2
    = b – a
    a + b

    ∴ c – b + a – c + b – a = 0



  1. If a3 = 117 + b3 and a = 3 + b,then the value of (a + b) is :









  1. View Hint View Answer Discuss in Forum

    a3 – b3 = 117; a – b = 3
    ⇒ (a – b)(a2 + ab + b2) = 117
    ⇒ 3 × (a2 + ab + b2) = 117

    ⇒ a2 + ab + b2 =
    117
    = 39
    3

    ⇒ (a - b)2 + 3ab = 39
    ⇒ 32 + 3ab = 39
    ⇒ 3ab = 39 – 9 = 30
    ⇒ ab =
    30
    = 10
    3

    ⇒ (a + b)2 = (a - b)2 + 4ab
    = 9 + 4 × 10 = 49
    ∴ a + b = √49 = ± 7

    Correct Option: A

    a3 – b3 = 117; a – b = 3
    ⇒ (a – b)(a2 + ab + b2) = 117
    ⇒ 3 × (a2 + ab + b2) = 117

    ⇒ a2 + ab + b2 =
    117
    = 39
    3

    ⇒ (a - b)2 + 3ab = 39
    ⇒ 32 + 3ab = 39
    ⇒ 3ab = 39 – 9 = 30
    ⇒ ab =
    30
    = 10
    3

    ⇒ (a + b)2 = (a - b)2 + 4ab
    = 9 + 4 × 10 = 49
    ∴ a + b = √49 = ± 7