Algebra
-
If 4x + 2P = 12 for what value of P, x = 6 ? 3
-
View Hint View Answer Discuss in Forum
When x = 6,
4 × 6 + 2P = 12 3
⇒ 8 + 2P = 12
⇒ 2P = 12 – 8 = 4
⇒ P = 2Correct Option: C
When x = 6,
4 × 6 + 2P = 12 3
⇒ 8 + 2P = 12
⇒ 2P = 12 – 8 = 4
⇒ P = 2
- Let a = √6 − √5 , b = √5 − 2, c = 2 – √3
Then point out the correct alternative among the four alternatives given below.
-
View Hint View Answer Discuss in Forum
1 = 1 a √6 – √5 √6 + √5 = √6 + √5 6 − 5
Similarly,1 = √5 + 2; 1 = 2 + √3 b c ∴ 1 > 1 > 1 ⇒ a < b < c a b c Correct Option: D
1 = 1 a √6 – √5 √6 + √5 = √6 + √5 6 − 5
Similarly,1 = √5 + 2; 1 = 2 + √3 b c ∴ 1 > 1 > 1 ⇒ a < b < c a b c
-
If x = 5 − √21, then the value of √x is √32 − x − √21
-
View Hint View Answer Discuss in Forum
√x = √5 − √21
⇒ √x = √10 − 2√21 √2 = √7 + 3 − 2 × √7× √3 √2 = √7 − √3 √2
√32 − 2x = √32 − 2 ( 5 − √21)
= √32 − 10 + 2√21)
= √22 + 2√21)
= √21 + 1 + 2 × √21 × 1
= √21 + 1= √7 − √3 √2(√21 + 1 − √21) = 1 = √7 − √3 √2 Correct Option: B
√x = √5 − √21
⇒ √x = √10 − 2√21 √2 = √7 + 3 − 2 × √7× √3 √2 = √7 − √3 √2
√32 − 2x = √32 − 2 ( 5 − √21)
= √32 − 10 + 2√21)
= √22 + 2√21)
= √21 + 1 + 2 × √21 × 1
= √21 + 1= √7 − √3 √2(√21 + 1 − √21) = 1 = √7 − √3 √2
- If 6x – 5y = 13, 7x + 2y = 23 then 11x + 18y =
-
View Hint View Answer Discuss in Forum
6x – 5y = 13 ...(i)
7x + 2y = 23 ...(ii)
By equation (i) × 2 + (ii) × 5,12x – 10y = 26 35x + 10y = 115 _______________ 47x = 141
⇒ x = 3
From equation (i),
6 × 3 – 5y = 13
⇒ 18 – 5y = 13
⇒ 5y = 5
⇒ y = 1
∴ 11x + 18y = 11 × 3 + 18 × 1
= 33 + 18 = 51Correct Option: B
6x – 5y = 13 ...(i)
7x + 2y = 23 ...(ii)
By equation (i) × 2 + (ii) × 5,12x – 10y = 26 35x + 10y = 115 _______________ 47x = 141
⇒ x = 3
From equation (i),
6 × 3 – 5y = 13
⇒ 18 – 5y = 13
⇒ 5y = 5
⇒ y = 1
∴ 11x + 18y = 11 × 3 + 18 × 1
= 33 + 18 = 51
- The value of (xb + c)b − c (xc + a)c − a (xa + b)a − b (x ≠ 0) is
-
View Hint View Answer Discuss in Forum
(xb + c)b − c. (xc + a)c − a.(xa + b)a − b
= xb2− c2.xc2− a2.xa2− b2
= xb2 − c2 + c2− a2 + a2 − b2 = x0 = 1Correct Option: A
(xb + c)b − c. (xc + a)c − a.(xa + b)a − b
= xb2− c2.xc2− a2.xa2− b2
= xb2 − c2 + c2− a2 + a2 − b2 = x0 = 1