Algebra


  1. If 4a -
    4
    + 3 = 0 then the value of : a3 -
    1
    + 3 = ?
    aa3










  1. View Hint View Answer Discuss in Forum

    4a -
    4
    = -3
    a

    On dividing by 4,
    ⇒ a -
    1
    =
    -3
    a4

    ∴ a3 -
    1
    = a -
    1
    3 + 3 . a .
    1
    a -
    1
    a3aaa

    ⇒ a3 -
    1
    =
    -3
    3 + 3 ×
    -3
    a344

    ⇒ a3 -
    1
    = -
    27
    -
    9
    a3644

    ⇒ a3 -
    1
    =
    -27 - 144
    =
    -171
    a36464

    ∴ a3 -
    1
    + 3 =
    -171
    + 3 =
    -171 + 192
    a36464

    a3 -
    1
    + 3 =
    21
    a364

    Correct Option: C

    4a -
    4
    = -3
    a

    On dividing by 4,
    ⇒ a -
    1
    =
    -3
    a4

    ∴ a3 -
    1
    = a -
    1
    3 + 3 . a .
    1
    a -
    1
    a3aaa

    ⇒ a3 -
    1
    =
    -3
    3 + 3 ×
    -3
    a344

    ⇒ a3 -
    1
    = -
    27
    -
    9
    a3644

    ⇒ a3 -
    1
    =
    -27 - 144
    =
    -171
    a36464

    ∴ a3 -
    1
    + 3 =
    -171
    + 3 =
    -171 + 192
    a36464

    a3 -
    1
    + 3 =
    21
    a364


  1. If x2 + x = 5 then the value of (x + 3)3 +
    1
    is
    (x + 3)3










  1. View Hint View Answer Discuss in Forum

    x2 + x = 5 (Given)
    Let, x + 3 = a

    1
    =
    1
    x + 3a

    Now , a +
    1
    = (x + 3) +
    1
    a(x + 3)

    a +
    1
    =
    (x + 3)2 + 1
    a(x + 3)

    a +
    1
    =
    x2 + 6x + 9 + 1
    ax + 3

    a +
    1
    =
    x2 + x + 5x + 10
    ax + 3

    a +
    1
    =
    5 + 5x + 10
    ax + 3

    a +
    1
    =
    5x + 15
    =
    5(x + 3)
    = 5
    ax + 3x + 3

    ∴ a3 +
    1
    = a +
    1
    3 - 3 . a .
    1
    a +
    1
    a3aaa

    Required answer = (5)3 – 3 × 5 = 125 – 15 = 110

    Correct Option: B

    x2 + x = 5 (Given)
    Let, x + 3 = a

    1
    =
    1
    x + 3a

    Now , a +
    1
    = (x + 3) +
    1
    a(x + 3)

    a +
    1
    =
    (x + 3)2 + 1
    a(x + 3)

    a +
    1
    =
    x2 + 6x + 9 + 1
    ax + 3

    a +
    1
    =
    x2 + x + 5x + 10
    ax + 3

    a +
    1
    =
    5 + 5x + 10
    ax + 3

    a +
    1
    =
    5x + 15
    =
    5(x + 3)
    = 5
    ax + 3x + 3

    ∴ a3 +
    1
    = a +
    1
    3 - 3 . a .
    1
    a +
    1
    a3aaa

    Required answer = (5)3 – 3 × 5 = 125 – 15 = 110



  1. If x2 + y2 + z2 = 2 (x + z – 1), then the value of :
    x3 + y3 + z3 = ?









  1. View Hint View Answer Discuss in Forum

    x2 + y2 + z2 = 2(x + z – 1)
    ⇒ x2 + y2 + z2 = 2x + 2z – 2
    ⇒ x2 - 2x + y2 + z2 - 2z + 2 = 0
    ⇒ x2 - 2x + 1 + y2 + z2 - 2z + 1 = 0
    ⇒ (x - 1)2 + y2 + (z - 1)2 = 0
    ∴ a2 + b2 + c2 = 0 ⇒ a = 0, b = 0, c = 0]
    ∴ x – 1 = 0 ⇒ x = 1
    y = 0
    z – 1 = 0 ⇒ z = 1
    ∴ x3 + y3 + z3 = 1 + 0 + 1 = 2

    Correct Option: A

    x2 + y2 + z2 = 2(x + z – 1)
    ⇒ x2 + y2 + z2 = 2x + 2z – 2
    ⇒ x2 - 2x + y2 + z2 - 2z + 2 = 0
    ⇒ x2 - 2x + 1 + y2 + z2 - 2z + 1 = 0
    ⇒ (x - 1)2 + y2 + (z - 1)2 = 0
    ∴ a2 + b2 + c2 = 0 ⇒ a = 0, b = 0, c = 0]
    ∴ x – 1 = 0 ⇒ x = 1
    y = 0
    z – 1 = 0 ⇒ z = 1
    ∴ x3 + y3 + z3 = 1 + 0 + 1 = 2


  1. The HCF of x8 – 1 and x4 + 2x3 – 2x – 1 is :









  1. View Hint View Answer Discuss in Forum

    x8 – 1 = (x4)2 - 12
    = (x4 + 1)(x4 - 1)
    = (x4 + 1)(x2 - 1) (x2 + 1)
    = (x4 + 1)(x2 + 1)(x + 1)(x - 1)
    [ ∴ a2 - b2 = (a + b)(a - b) ]
    x4 + 2x3 – 2x – 1 = (x4 - 1) + 2x3 – 2x
    = (x2 - 1) (x2 + 1) + 2x(x2 - 1)
    = (x2 + 1 + 2x)(x2 - 1)
    = (x + 1)2(x + 1)(x - 1)
    ∴ H.C.F = (x + 1) (x – 1) = (x2 - 1)

    Correct Option: B

    x8 – 1 = (x4)2 - 12
    = (x4 + 1)(x4 - 1)
    = (x4 + 1)(x2 - 1) (x2 + 1)
    = (x4 + 1)(x2 + 1)(x + 1)(x - 1)
    [ ∴ a2 - b2 = (a + b)(a - b) ]
    x4 + 2x3 – 2x – 1 = (x4 - 1) + 2x3 – 2x
    = (x2 - 1) (x2 + 1) + 2x(x2 - 1)
    = (x2 + 1 + 2x)(x2 - 1)
    = (x + 1)2(x + 1)(x - 1)
    ∴ H.C.F = (x + 1) (x – 1) = (x2 - 1)



  1. If
    x24 + 1
    = 7 , then the value of
    x72 + 1
    is
    x12x36










  1. View Hint View Answer Discuss in Forum

    x24 + 1
    = 7
    x12

    x24
    +
    1
    x12x12

    ⇒ x12 +
    1
    = 7
    x12

    x72 + 1
    =
    x72
    +
    1
    x36x36x36

    = x36 +
    1
    x36

    = x12 +
    1
    3 - 3 . x12 .
    1
    x12 +
    1
    x12x12x12

    [ ∴ a3 + b3 = (a + b)3 - 3ab(a + b)]
    ⇒ x36 +
    1
    = 73 - 3 × 7 = 343 – 21 = 322
    x36

    Correct Option: B

    x24 + 1
    = 7
    x12

    x24
    +
    1
    x12x12

    ⇒ x12 +
    1
    = 7
    x12

    x72 + 1
    =
    x72
    +
    1
    x36x36x36

    = x36 +
    1
    x36

    = x12 +
    1
    3 - 3 . x12 .
    1
    x12 +
    1
    x12x12x12

    [ ∴ a3 + b3 = (a + b)3 - 3ab(a + b)]
    ⇒ x36 +
    1
    = 73 - 3 × 7 = 343 – 21 = 322
    x36