Algebra
-
If x + y + z = 0, then the value of x2 + y2 + z2 is x2 - yz
-
View Hint View Answer Discuss in Forum
x + y + z = 0
⇒ –x = y + z
⇒ (–x)2 = (y + z)2
⇒ x2 = y2 + z2 + 2yz ...(i)∴ Expression = x2 + y2 + z2 x2 - yz Expression = y2 + z2 + 2yz + y2 + z2 { ∴ Using (i) } y2 + z2 + 2yz - yz Expression = 2y2 + 2z2 + 2yz y2 + z2 + yz Expression = 2(y2 + z2 + yz) = 2 y2 + z2 + yz
Correct Option: D
x + y + z = 0
⇒ –x = y + z
⇒ (–x)2 = (y + z)2
⇒ x2 = y2 + z2 + 2yz ...(i)∴ Expression = x2 + y2 + z2 x2 - yz Expression = y2 + z2 + 2yz + y2 + z2 { ∴ Using (i) } y2 + z2 + 2yz - yz Expression = 2y2 + 2z2 + 2yz y2 + z2 + yz Expression = 2(y2 + z2 + yz) = 2 y2 + z2 + yz
- If a = 4.965, b = 2.343 and c = 2.622, then the value of a3 - b3 - c3 - 3abc is
-
View Hint View Answer Discuss in Forum
Using Rule 21,
a = 4.965, b = 2.343, c = 2.622
a + (–b) + (–c) = 4.965 – 2.343 – 2.622 = 0
∴ a3 + b3 + c3 – 3 abc = a3 + (–b)3 + (–c)3 – 3abc = 0Correct Option: C
Using Rule 21,
a = 4.965, b = 2.343, c = 2.622
a + (–b) + (–c) = 4.965 – 2.343 – 2.622 = 0
∴ a3 + b3 + c3 – 3 abc = a3 + (–b)3 + (–c)3 – 3abc = 0
- If a = 331, b = 336 and c = – 667, then the value of a3 + b3 + c3 - 3abc is
-
View Hint View Answer Discuss in Forum
Using Rule 21,
a + b + c = 331 + 336 – 667 = 0
∴ a3 + b3 + c3 – 3 abc = 0Correct Option: D
Using Rule 21,
a + b + c = 331 + 336 – 667 = 0
∴ a3 + b3 + c3 – 3 abc = 0
-
If x + 1 = 2, then x2013 + 1 = ? x x2014
-
View Hint View Answer Discuss in Forum
x + 1 = 2 x
⇒ x2 + 1 = 2x
⇒ x2 - 2x + 1 = 0
⇒ (x - 1)2 = 0 ⇒ x = 1∴ x2013 + 1 = 1 + 1 = 2 x2014
Second Method :
Using Rule 16,Here, x + 1 = 2 x ∴ x2013 + 1 = 2 x2014
Correct Option: D
x + 1 = 2 x
⇒ x2 + 1 = 2x
⇒ x2 - 2x + 1 = 0
⇒ (x - 1)2 = 0 ⇒ x = 1∴ x2013 + 1 = 1 + 1 = 2 x2014
Second Method :
Using Rule 16,Here, x + 1 = 2 x ∴ x2013 + 1 = 2 x2014
-
If p = 5 , then 27p3 - 1 - 9 p2 + 1 p is equal to 18 216 2 4
-
View Hint View Answer Discuss in Forum
Using Rule 9,
We have , 27p3 - 1 - 9 p2 + 1 216 2 4 = (3p)3 - 1 3 - 3.(3p)2 1 + 3 × 3p × 1 × 1 6 6 6 6 = 3p - 1 3 = 3 × 5 - 1 3 6 18 6 = 5 - 1 3 = 4 3 6 6 6 = 2 3 = 8 3 27
Correct Option: C
Using Rule 9,
We have , 27p3 - 1 - 9 p2 + 1 216 2 4 = (3p)3 - 1 3 - 3.(3p)2 1 + 3 × 3p × 1 × 1 6 6 6 6 = 3p - 1 3 = 3 × 5 - 1 3 6 18 6 = 5 - 1 3 = 4 3 6 6 6 = 2 3 = 8 3 27