Algebra


  1. If x + y + z = 0, then the value of
    x2 + y2 + z2
    is
    x2 - yz










  1. View Hint View Answer Discuss in Forum

    x + y + z = 0
    ⇒ –x = y + z
    ⇒ (–x)2 = (y + z)2
    ⇒ x2 = y2 + z2 + 2yz ...(i)

    ∴ Expression =
    x2 + y2 + z2
    x2 - yz

    Expression =
    y2 + z2 + 2yz + y2 + z2
      { ∴ Using (i) }
    y2 + z2 + 2yz - yz

    Expression =
    2y2 + 2z2 + 2yz
    y2 + z2 + yz

    Expression =
    2(y2 + z2 + yz)
    = 2
    y2 + z2 + yz

    Correct Option: D

    x + y + z = 0
    ⇒ –x = y + z
    ⇒ (–x)2 = (y + z)2
    ⇒ x2 = y2 + z2 + 2yz ...(i)

    ∴ Expression =
    x2 + y2 + z2
    x2 - yz

    Expression =
    y2 + z2 + 2yz + y2 + z2
      { ∴ Using (i) }
    y2 + z2 + 2yz - yz

    Expression =
    2y2 + 2z2 + 2yz
    y2 + z2 + yz

    Expression =
    2(y2 + z2 + yz)
    = 2
    y2 + z2 + yz


  1. If a = 4.965, b = 2.343 and c = 2.622, then the value of a3 - b3 - c3 - 3abc is









  1. View Hint View Answer Discuss in Forum

    Using Rule 21,
    a = 4.965, b = 2.343, c = 2.622
    a + (–b) + (–c) = 4.965 – 2.343 – 2.622 = 0
    ∴ a3 + b3 + c3 – 3 abc = a3 + (–b)3 + (–c)3 – 3abc = 0

    Correct Option: C

    Using Rule 21,
    a = 4.965, b = 2.343, c = 2.622
    a + (–b) + (–c) = 4.965 – 2.343 – 2.622 = 0
    ∴ a3 + b3 + c3 – 3 abc = a3 + (–b)3 + (–c)3 – 3abc = 0



  1. If a = 331, b = 336 and c = – 667, then the value of a3 + b3 + c3 - 3abc is









  1. View Hint View Answer Discuss in Forum

    Using Rule 21,
    a + b + c = 331 + 336 – 667 = 0
    ∴ a3 + b3 + c3 – 3 abc = 0

    Correct Option: D

    Using Rule 21,
    a + b + c = 331 + 336 – 667 = 0
    ∴ a3 + b3 + c3 – 3 abc = 0


  1. If x +
    1
    = 2, then x2013 +
    1
    = ?
    xx2014










  1. View Hint View Answer Discuss in Forum

    x +
    1
    = 2
    x

    ⇒ x2 + 1 = 2x
    ⇒ x2 - 2x + 1 = 0
    ⇒ (x - 1)2 = 0 ⇒ x = 1
    ∴ x2013 +
    1
    = 1 + 1 = 2
    x2014

    Second Method :
    Using Rule 16,
    Here, x +
    1
    = 2
    x

    ∴ x2013 +
    1
    = 2
    x2014

    Correct Option: D

    x +
    1
    = 2
    x

    ⇒ x2 + 1 = 2x
    ⇒ x2 - 2x + 1 = 0
    ⇒ (x - 1)2 = 0 ⇒ x = 1
    ∴ x2013 +
    1
    = 1 + 1 = 2
    x2014

    Second Method :
    Using Rule 16,
    Here, x +
    1
    = 2
    x

    ∴ x2013 +
    1
    = 2
    x2014



  1. If p =
    5
    , then 27p3 -
    1
    -
    9
    p2 +
    1
    p is equal to
    1821624










  1. View Hint View Answer Discuss in Forum

    Using Rule 9,

    We have , 27p3 -
    1
    -
    9
    p2 +
    1
    21624

    = (3p)3 -
    1
    3 - 3.(3p)2
    1
    + 3 × 3p ×
    1
    ×
    1
    6666

    = 3p -
    1
    3 = 3 ×
    5
    -
    1
    3
    6186

    =
    5
    -
    1
    3 =
    4
    3
    666

    =
    2
    3 =
    8
    327

    Correct Option: C

    Using Rule 9,

    We have , 27p3 -
    1
    -
    9
    p2 +
    1
    21624

    = (3p)3 -
    1
    3 - 3.(3p)2
    1
    + 3 × 3p ×
    1
    ×
    1
    6666

    = 3p -
    1
    3 = 3 ×
    5
    -
    1
    3
    6186

    =
    5
    -
    1
    3 =
    4
    3
    666

    =
    2
    3 =
    8
    327