Home » Aptitude » Algebra » Question
  1. If x is a rational number and
    (x + 1)3 - (x - 1)3
    = 2 , then the sum of numerator and denominator of x is
    (x + 1)2 - (x - 1)2

    1. 3
    2. 4
    3. 5
    4. 7
Correct Option: B

( x + 1 )3 - ( x - 1 )3
= 2
( x + 1 )2 - ( x - 1 )2

( x3 + 3x2 + 3x + 1 ) - ( x3 - 3x2 + 3x - 1 )
= 2
( x2 + 2x + 1 ) - ( x2 - 2x + 1 )

x3 + 3x2 + 3x + 1 - x3 + 3x2 - 3x + 1
= 2
x2 + 2x + 1 - x2 + 2x - 1

6x2 + 2
= 2
4x

3x2 + 1
= 1 ⇒ 3x2 + 1 = 4x
4x

⇒ 3x2 - 4x + 1 = 0
⇒ 3x2 - 3x - x + 1 = 0
⇒ 3x(x – 1) – 1(x – 1) = 0
⇒ (3x – 1)(x – 1) = 0
⇒ 3x – 1 = 0, or, x – 1 = 0
⇒ x =
1
or 1
3

Hence, sum of the numerator and denominator = 1 + 3 = 4 or, 1 + 1 = 2



Your comments will be displayed only after manual approval.