Home » Aptitude » Algebra » Question
  1. p and q are positive numbers satisfying 3p + 2pq = 4 and 5q + pq = 3. Find the value of p.
    1. 1 or −
      9
      5
    2. 1
      or −
      20
      23
    3. 1 or −
      20
      3
    4. 1
      or −
      9
      25
Correct Option: C

3p + 2pq = 4
→ p (3 + 2q) = 4

⇒ p =
4
.........(i)
3 + 2q

Now, putting the value of p in
5q + pq = 3,
we get
5q +
4
(q) = 3
3 + 2q

15q + 10q² + 4q
= 3
3 + 2q

⇒ 19q + 10q² = 9 + 6q
⇒ 10q² + 13q – 9 = 0
⇒ 10q² + 18q – 5q – 9 = 0
⇒ 2q (5q + 9) – 1 (5q + 9) = 0
⇒ (2q – 1) (5q + 9) = 0
⇒ q =
1
or -
9
22

Putting q = 1/2 in (i),
⇒ p =
4
= 1
3 + 2 × (1/2)

putting q = -
9
5

= p
4
3 + 2-
9
5

=
4 × 5
15 - 18

= -
20
3



Your comments will be displayed only after manual approval.