-
If x1 / 3 + y1 / 3 = z1 / 3 , then {(x + y – z)3 + 27xyz} equals :
-
- –1
- 1
- 0
- 27
Correct Option: C
Using Rule 8,
x1 / 3 + y1 / 3 = z1 / 3 ......(i)
Cubing both sides,
( x1 / 3 + y1 / 3 = z1 / 3 )3 = z
⇒ x + y + 3 x1 / 3 . y1 / 3 ( 1 / 3 + y1 / 3 ) = z
[∴ (a + b)3 = a3 + b3 + 3ab (a + b)]
⇒ x + y – z = - 3 x1 / 3 . y1 / 3 .z1 / 3 ......(ii) [From equation (i)]
∴ (x + y – z)3 + 27xyz = [ - 3x1 / 3 . y1 / 3 . z1 / 3 ]3 + 27xyz [From equation (ii)]
= – 27xyz + 27xyz = 0