-
If x + 1 = 1 ,then ( x + 1 )5 + 1 equals x + 1 ( x + 1 )5
-
- 1
- 2
- 4
- 8
- 1
Correct Option: B
x + | = 1 | ||
x + 1 |
Adding 1 on both sides ,
⇒ ( x + 1 ) + | = 2 | |
( x + 1 ) |
On squaring,
⇒ ( x + 1 )2 + | + 2 = 4 | |
( x + 1 )2 |
⇒ ( x + 1 )2 + | = 2 ...(i) | |
( x + 1 )2 |
Again, cubing , ( x + 1 ) + | = 2 | |
( x + 1 ) |
⇒ ( x + 1 )3 + | + 3 | ( x + 1 ) + | = 8 | ||||
( x + 1 )3 | ( x + 1 ) |
⇒ ( x + 1 )3 + | = 8 – 3 × 2 = 2 | |
( x + 1 )3 |
∴ | ( x + 1 )2 + | ( x + 1 )3 + | = 2 × 2 = 4 | ||||||
( x + 1 )2 | ( x + 1 )3 |
⇒ ( x + 1 )5 + | ( x + 1 ) + | + | = 4 | ||||
( x + 1 ) | ( x + 1 )5 |
⇒ ( x + 1 )5 + | = 4 – 2 = 2 | |
( x + 1 )5 |
Second method :
Here, x + | = 1 | ||
x + 1 |
⇒ ( x + 1 ) + | = 2 | |
( x + 1 ) |
∴ ( x + 1 )2 + | = 2 | |
( x + 1 )2 |