Home » Aptitude » Algebra » Question
  1. If a + b + c = 6, a2 + b2 + c2 = 14 and a3 + b3 + c3 = 36 , then the value of abc is
    1. 3
    2. 6
    3. 9
    4. 12
Correct Option: B

(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
⇒ 36 = 14 + 2(ab + bc + ca)
⇒ ab + bc + ca = (36 – 14) ÷ 2
⇒ ab + bc + ca = 11 ....(i)
∴ a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
⇒ 36 – 3abc = 6 (14 – 11) [By (i)]
⇒ 36 – 3abc = 84 – 66 = 18
⇒ 3abc = 36 – 18 = 18
⇒ abc = 6



Your comments will be displayed only after manual approval.