Home » Aptitude » Algebra » Question
  1. If
    1
    = a ³√4 + b ³√2 + c and a, b, c are rational numbers, then a + b + c is equal to
    [ ³√4 + ³√2 + 1 ]

    1. 0
    2. 1
    3. 2
    4. 3
Correct Option: A

1
= a ³√4 + b ³√2 + c
[ ³√4 + ³√2 + 1 ]

1
= a.22 / 3 + b.21 / 3 + c
( 22 / 3 + 21 / 3 + 1 )

( 21 / 3 - 1 )
= a.22 / 3 + b.21 / 3 + c
( 21 / 3 - 1 )( 22 / 3 + 21 / 3 + 1 )

( 21 / 3 - 1 )
= a.22 / 3 + b.21 / 3 + c
( 2 - 1 )

[ ∵ ( a + b )(a2 + b2 - ab) = a3 - b3 ]
⇒ a = 0, b = 1, c = – 1
∴ a + b + c = 0 + 1 – 1 = 0



Your comments will be displayed only after manual approval.